Using Load Shedding to Fight Tail-Latency on Runtime-Based
Services

Daniel Fireman, Raquel Lopes, Joao Brunet

'Departamento de Sistemas e Computacdo
Universidade Federal de Campina Grande (UFCGQG)
Caixa Postal 10.106 — 58.109-970 — Campina Grande — PB — Brasil

danielfireman@lsd.ufcg.edu.br, {ragquel, joao.arthur}@computacao.ufcg.edu.br

Abstract. HTTP services written in managed runtime languages such as Java
are popular nowadays. By relying on a runtime environment (RE), these ser-
vices can benefit from safer code, cross-platform, etc. However, it is well known
that RE’s pauses due to garbage collection increase response times (i.e. tail la-
tency). As modern services often rely on many remote calls, the overall perfor-
mance turns out to be determined by the tail, instead of the average latency. To
address this problem we propose an easy-to-use combination of load shedding
and control of garbage collector interventions. We implemented and evaluated a
prototype in Java. Our results show a reduction of tail latency by approximately
40%, while throughput and CPU utilization were negligibly impacted.

Resumo. Servicos HTTP escritos em linguagens baseadas em runtime sdo
muito populares nos dias de hoje. Por se basearem em uma runtime,
estes servicos podem usufruir de beneficios como codigo mais seguro, multi-
plataforma e etc. Todavia, é bem conhecido que pausas da runtime devido a
coleta de lixo aumentam o tempo de resposta. Como servicos modernos fre-
quentemente se baseiam em diversas chamadas remotas, o desempenho total do
sistema acaba sendo determinado pela cauda da distribuicdo de laténcia, ao
invés da sua média. Como solugdo para esse problema, propomos uma combi-
nagdo de prevencdo de carga e controle das intervencoes causadas por coletores
de lixo. Nos implementamos um prototipo em Java e avaliamos o seu desem-
penho diante de workloads sintéticas. Os resultados mostram uma reducdo de
aproximadamente 40% na cauda de laténcia, mantendo praticamente a mesma
vazdo e utilizagdo de CPU.

1. Introduction

Imagine a client making a request on a single web service. Ninety-nine times out of a
hundred that request will be returned within an acceptable period of time. But one time
out of hundred it may not. If you look at the service’s latency distribution, there is one
large entry at the tail end. When the service does not send upstream requests, all it means
is that one client gets a slower response occasionally.

Now, instead of one, let us imagine that a request will require response from 100
services. That changes everything about your system’s responsiveness. Suddenly the
majority of queries (i.e., 1 — 0.99'%° = 63%) will take greater than 1 second. Hence,



temporary high-latency episodes may come to dominate overall service performance at
large scale [Dean and Barroso 2013].

It is important to point out that, not only the temporary high-latency is a problem,
but also the high variability on the tail of the distribution because it increases the unpre-
dictability of the system latency. To better explain this problem, let us analyze Figure 1. It
shows a concrete example of the service time’s percentiles for a synthetic workload. For
example, looking at the 99.9 percentile line, a point in the graph means that, at a given
time (horizontal axis), 99.9% of the requests are below the corresponding latency (vertical
axis). As expected, the more we increase the percentiles, the slower are the service times.

300

. ercentile

B ercentile

= 99, ercemlle
.9 percentile

Service Time (ms)
S
o

N
o
=]

0 50 100 15

0 200 25(
Experiment duration (s)

Figure 1. Service time of a single experiment run.

For clarity purposes, we would like to point out two main aspects of Figure 1.
First, as you can see, the 99.9 percentile latency is substantially worse in comparison to
the other percentiles. Also, the variability of the 99.9 percentile is substantially greater
than the others. In this paper, we propose a solution to narrow down the 99.9 percentile
line (reduce its variability) and bring it closer to the other percentiles (reduce service
time tail) without significantly compromising the throughput and CPU utilization of the
service.

To achieve this, we first had to understand the state-of-the practice on web ser-
vices and what causes the aforementioned problem. In this context, there has been
an increasing push for low latency and variability at the tail [Dean and Barroso 2013,
Rumble et al. 2011]. To get a real feeling about these large scale services, a single Face-
book page load can involve fetching hundreds of results from their distributed caching
layer [Nishtala et al. 2013], while a Bing search consists of 15 stages and involves thou-
sands of servers in some of them [Jalaparti et al. 2013]. These applications require latency
in microseconds with tight tail guarantees.

Also, a large portion of workloads that are running in cloud data-
centers are written in programming languages supported by managed runtime
systems[Meyerovich and Rabkin 2013]. Companies such as Twitter [Humble 2011]
and Facebook [Verlaguet and Menghrajani 2014] are writing most of their code in
Scala and PHP. At the same time, cloud platforms such as Google AppEngine
[Krishnan and Gonzalez 2015] and Microsoft Azure [Li 2009] are supporting managed
languages as explicit targets. Finally, many web startups write their code in languages



such as Python, Ruby or JavaScript (which are all managed languages), as it allows them
to iterate quickly. All these facts confirm that managed runtimes are popular and it does
not seem a temporary situation.

Managed languages comes with a price though. Unfortunately, garbage collection
(GC) is one of the main causes of high tail-latency [Dean and Barroso 2013]. That hap-
pens mainly due to two reasons: 1) stop-of-the-world pauses [Gidra et al. 2013], in which
applications are completely stopped during collection, and 11) CPU competition, as GC
threads could run concurrently with the application.

In summary, managed languages are popular but the GC causes high tail-latency,
as the ones observed in Figure 1. In order to eliminate garbage collection related latency
with minimum impact on throughput, we propose an easy-to-use HTTP request intercep-
tor to be added to web services in managed languages. Inspired by [Terei and Levy 2015],
Garbage Collector Control Interceptor (GCI) controls garbage collection interventions
and uses built-in HTTP load shedding mechanisms to deal with the requests that arrives
during these interventions. We claim that the proposed solution has the following charac-
teristics:

Is application code and load agnostic;

Requires little or no configuration;

Requires no understanding of the runtime system’s internals;
Relies on vanilla HTTP for load shedding (RFC7231);

Is completely open source.

We implemented a Java prototype of GCI to reduce garbage collection related
latency in a stateless HTTP service. We compare the service performance with GCI on
and off (baseline), both cases using the OpenJDK’s default garbage collector scheme. Our
results show that activating GCI leads to a 40% reduction in 99.9 percentile latency and a
5 times reduction in 99.9 percentile latency variability. All those benefits coming with a
1.2% decrease in throughput and 0.5% decrease CPU utilization in the worst case.

The remaining of this paper is organized as follows. Section 2 describes some key
concepts. In Section 3 we describe the design and implementation of GCI. In Section 4
we describe our research questions and detail the performed evaluation and results. In
Section 5 we describe related work and finally, we conclude in Section 6.

2. Background

2.1. Datacenter workload expectations

Nowadays, the workload running inside a datacenter is very heterogeneous, spanning
from batch jobs that need no quality of service (QoS) guarantees to distributed HTTP ser-
vices which are typically user-facing applications. These services are formed by many in-
teracting web services that are lightweight, maintainable, and scalable [Rodriguez 2008].
Since these jobs are user-facing, they need QoS guarantees, especially regarding their la-
tency. A single user request may travel among various service points before returning to
the user again, touching dozens or even hundreds of servers. To allow these interactions
between services without impacting the latency experienced by users, it is of utmost im-
portance to consider not only the average latency of these services, but also their latency
at the tail. In this environment, it is important to guarantee that even the 99.9 percentiles
of the latency of the services are limited by rigid bounds [Terei and Levy 2015].



2.2. Opportunities of Managed Languages

Many of these web services are built using managed languages, i.e., languages whose pro-
grams execute on top of a runtime environment. Current examples of such languages are
Java, Python and Ruby. The main reason of the popularity of these managed languages
is probably time to market, since they often offer to developers some facilities such as
dynamic typing, class resolution at runtime, reflection and garbage collection. Further
advantages of managed languages include opportunities for dynamic optimization, espe-
cially when we consider long running services[Dean and Barroso 2013]. Jobs that run for
a long time amortize the startup time delays impressed by the just-in-time compilation.
Many managed runtime systems also compact memory during execution, which is im-
portant for long-running applications. This compaction avoids performance degradation
from fragmentation and loss of locality.

2.3. State of Garbage Collection

Garbage collection is the automatic memory management mechanism of an executing
program. It reduces the engineering overhead from explicitly dealing with pointers and
eliminates many sources of errors. Even though runtime environment implementers have
been working on building faster garbage collectors [Tene et al. 2011, Ugawa et al. 2014],
pause times at the tail are still too long[Blackburn et al. 2008]. This is an important issue
for those managed languages, since the impact of the garbage collection is often unpre-
dictable and hard to debug. For instance, GC performance can vary greatly from system
to system, or even over the lifetime of a single system [Soman et al. 2004].

As the GC impact is an unavoidable fact for those applications running on top
of a runtime environment, it is important to have external tools to deal with it. Many
languages provide support for programmable interfaces to interact with the garbage col-
lector. For instance, Java Virtual Machine (JVM) supports the System.gc() function,
which suggests to the runtime to start the GC. It also has the Garbage Collection Noti-
fications API extension, which supports notifying the application after a collection has
completed[Oracle 2015]. JVM has no support to automatically disabling garbage collec-
tion. Microsoft .NET also has a Garbage Collection Notifications API, which offers a
broad set of notification options [Microsoft 2015]. It also supports forcing a collection
through GC.Collect() function and disabling GC. We are aware of similar APIs in many
other languages, for instance Python, Ruby and Go. Without these APIs the GCI would
not be possible.

3. Garbage Collection Control Interceptor (GCI)

Changing the application code to deal with runtime pauses is difficult, as the GC behavior
is often unpredictable and its impact is hard to debug. Furthermore, tuning the GC of a
production system is hard. On the one side, it depends on characteristics of the load the
service is subjected to, which can be very dynamic in worldwide distributed systems. On
the other side, it depends on the service code, which can be deployed many times a day
through continuous delivery pipelines.

To help on that matter we propose the Garbage Collection Control Interceptor
(GCI). GCI is an HTTP request interceptor which controls garbage collector interven-
tions and take action based on those events. For the purposes of this work, we define an



HTTP request interceptor as a piece of code that is executed before every single request
received by an HTTP service. The concept itself is widely supported across most HTTP
server frameworks, but its name can vary. Frameworks like Ruby on Rails, Java’s J2EE
and Spring call them Filters, whereas it is called Middleware amongst Go developers.
Typically, interceptors can be activated with very minimum code changes (usually one
line), offering a non-intrusive way of performing common processing desired for every
HTTP request.

It is important to note that GCI is not an approach to garbage collection, but a new
approach to dealing with its performance impact on HTTP services. GCI is a technique
that is agnostic with regards to the HTTP service code and its load. It requires no (or
very little) specific configuration or understanding of the runtime system’s internals. As a
consequence, it is easy to use. GCl relies on vanilla HTTP specification for load shedding
(RFC7231) and is completely open source'.

Part of the GCI request processing is to decide when GC must run. Our proposal
is quite simple: monitor the utilization of the runtime’s heap pool(s) and when it reaches
a certain threshold, it is time to collect the garbage. With this in mind, Algorithm 1 shows
the pseudocode of the interceptor.

Input: Resp: HTTP response which is going to be sent to the client
Output: Whether to continue the request handling process

1 begin
2 if not ShouldAccept Request() then
3 Resp.SetStatusCode(503)
4 Resp.SetHeader(” Retry — After”, EstimateUnavailability())
5 return False
6 end
7 if Sample HeapU sage() then
8 if GetHeapUsage() > SHEDDING_THRESHOLD then
9 StopAccepting Requests()
10 concurrent
11 WaitOutstading Requests()
12 GC()
13 StartAccepting Requests|()
14 end
15 end
16 end
17 return True
18 end

Algorithm 1: Garbage Collector Control Interceptor Pseudocode

In summary, the GCI controls when GC must run, guaranteeing that no request
competes with GC for CPU or is delayed by having to wait in queues during the GC
intervention. The algorithm is simple and for practical purposes it can be implemented to
work with Java, Go, Ruby, and Python runtimes (but not restricted to them).

The processing of every request starts by checking whether the incoming request

! Available at https://github.com/danielfireman/gci



should be processed. If the request is allowed to be processed, the next step is to verify
whether the usage of memory pools reached the specified threshold. If so, the system stops
receiving new requests and a concurrent code block starts (so the request being executed is
not blocked). This concurrent block waits for all the outstanding requests to be processed
to then and forces the activation of the garbage collector. When the collection finishes,
the system starts accepting requests again. We are going to dive into algorithm details in
the next subsections.

3.1. Shedding requests

When a request must not be accepted (ShouldAccept Request() returns false), the re-
sponse is modified and the interceptor method returns false. This returned value deter-
mines the end of the request processing and immediate delivery of the HTTP response.
The modified response has a 503 status code (Service Unavailable). As per RFC7231,
the service unavailable status indicates that the service is currently unable to handle the
request due to a temporary overload or scheduled maintenance, which will likely be alle-
viated after some delay [Fielding and Reschke 2014].

Furthermore, GCI shed responses always have the Retry-After header set. The
service unavailability duration can be estimated using linear extrapolation from previous
events. This approach uses the values of the previous utilization of target memory pools
as predictors (or the overall heap, for non-generational GC schemes).

Shed requests may be immediately resent to another server. In practice, this is
done transparently by client APIs or load balancers. Also, the Retry-After response header
field suggests an appropriate amount of time for the client to wait before sending requests
again to the unavailable service.

3.2. Sampling Memory Usage Check

All languages considered export methods to fetch information about memory utilization.
Even though checking memory usage does not incur in a prohibitive cost when done once
in a while, check memory usage at each request would make GCI unusable, especially
in high load production deployments as ours. To decrease this overhead, GCI uses a
sampling window. Thus, the GCI knows the memory utilization information related to
the most recent window.

The Sample HeapU sage() method checks the sampling window and returns true
whether it is time to perform a memory utilization check, i.e, if a new window must be
considered. The size of this window varies based on the previous number of requests
processed between consecutive garbage collections. Using a number of requests is better
than a time interval for two reasons. Firstly, it is less impacted by load peaks and, sec-
ondly, it does not trigger unnecessary checks due to load valleys. All these values related
to the memory utilization monitoring are configurable.

3.3. Controlling Garbage Collector Activity

When the shedding threshold has been reached, no more requests can be ac-
cepted until garbage collection operation finishes. This is done by calling the
StopAccepting Requests, which makes ShouldAccept Request return false until
Start Accepting Requests call.



Garbage collector activity might incur in CPU competition or stop-of-the-world
pauses. For this reason, it is important to ensure that garbage collection does not occur
while processing requests. Thus, GCI must wait for all outstanding requests to finish
before collecting the memory garbage. Furthermore, these actions must not block the
request being processed (which would incur in latency increase). This is the reason for
the concurrent block (lines 10-14), which could, for example, be implemented in Java
by running the code in a new thread.

GCTI’s garbage collection control depends on: i) triggering (forcing) a garbage
collection and ii) avoiding automatic garbage collection. The former is expressed in the
pseudocode as GC(). As an example, the Java implementation of the GC'() method can
be executed through a System.gc() call. All target languages expose similar functions to
trigger garbage collections.

Disabling automatic garbage collections can be a problem for languages like Java,
which lack of programmatic ways of doing so. One way to deal with this limitation is
to make sure that automatic GC interventions will be as infrequent as possible. How
to do that? Since automatic GC occurs when the memory fills up, all we need to do
is to configure the runtime with the maximum possible heap and/or memory pools (for
generational GCs). Fortunately, other languages like Python, Ruby and Go have easy
ways to entirely disable automatic garbage collection, thus not requiring this workaround.

It is important to notice that GCI relies on the garbage collection scheme available.
It is orthogonal to any GC specifics as well as to any custom configuration or tuning
performed.

4. Evaluation

4.1. Experimental Setup

Let us start the evaluation by remembering the two main problems GCI aims to solve.
First, Figure 2(a) illustrates service times for a synthetic workload over time. The black
line is the average service times (median). The difference between the 99.9 and 50 per-
centile ranges from 72.69ms to 200.20ms, which represents a meaningful quality of ser-
vice degradation.

Second, in Figure 2(b), we present box plots that summarize the variability of
both 50 and 99.9 percentile cases. The interquartile range (IQR) of the 99.9 percentile is
70.4ms, which is in contrast with 50 percentile IQR (close to zero). That makes service
time’s predictability very difficult for the tail end, affecting capacity planning and SLOs
definition, for example.

We conducted a 1-factor design experiment to evaluate Garbage Collector Inter-
ceptor impact on the 99.9 percentile service time and its variability. The activation of GCI
was the only factor (GCI On and Off) and the service time was the dependent variable. We
also chose a simple service request handling flow: a CPU intensive operation and small
pause, simulating a blocking 1I/O call. This flow would represent, for instance, a query to
a database and processing results before sending the response back to the client.

We replicated each experiment 15 times. Each one of them last around 8 min-
utes. We discarded the first 4 minutes of each experiment to minimize JVM warm-up



50 percentile 99.9 percentile 300

200 W

[N]
o
=]

Service Time (ms)
Service time (ms)

=
(=3
=]

—_—
0
0 50 100 150 200 2500 50 100 150 200 25 0
Experiment Duration (s) 50 percentile 99.9 percentile
(a) 50 and 99.9 service time percentiles (b) Variability summary

Figure 2. Average service time

effects [Blackburn et al. 2008]. A client running on a different machine generated a con-
stant load of 70 requests per second. Service times were measured for later evaluation.

The HTTP server executed in a virtual machine with 2 VCPUs (2660 MHZ) and
4GB of RAM running on a Ubuntu Linux (kernel version 4.4.0-53-generic). The server
was executed using the OpenJDK 1.8.0_11 64-Bit Server VM (build 25.111-b14). Fur-
thermore, to activate GCI in Java we needed to avoid as much as possible the automatic
garbage collection. Because of that, we fixed heap size to 1 GB (i.e., setting -Xms1024m
and -Xmx1024m) and split the heap equally between young and old generations pools
(i.e. -XX:NewRatio=1).

4.2. Service Time Improvements

As we expect GCI to narrow and decrease the service time distribution tail, we drove our
evaluation based on the following null hypotheses:

Hy1: GCI does not improve the 99.9 percentile of the service time.
Hy »: GCI does not reduce the 99.9 percentile variability of the service time.

We measured the 99.9 percentile service time with both GCI off and on (Fig-
ures 3(a) and 3(b)) to address these hypotheses.

Histograms in Figure 3 give the shape of the 99.9 percentile distributions of the
service times. Please, be aware that axes are different. As you can note, the GCI reduces
the tail of the 99.9 service time percentile, as the distribution becomes more symmetric.
Furthermore, the GCI decreases the service time variation, once the range is narrower
(from 0, 1200]ms to |0, 150]m.s).

In summary, we could say that GCI leads to the following benefits:

e Faster service times: within the 99.9 service time percentile, the median decreased
from 175.8ms to 105.2ms and

e Predictable service times: within the 99.9 service time percentile, the IQR went
down from 82.1ms to 14.7ms. With less variation it easier to predict even the
maximum expected service times.



60
90

40

@
o

Frequency

Frequency

w

o
N
=]

o h v HHD 11

300 600 900
Service time (ms)

ull L1

100 120
Service time (ms)

(a) GCI Off (b) GCI On

Figure 3. Histogram of 99.9 service time percentile

To statistically confirm these results, we carried out one-sided version of the non-
parametric Mann-Whitney U Test [Hettmansperger 2011]. We chose this test because
both samples do not come from a normal distribution, as confirmed by the very low p-
values of Shapiro-Wilk Test (8.3771¢ and 1.005'*) [Shapiro and Wilk 1965]. Based on
the result of the Mann-Whitney U test (p-value < 2.2719), we refute hypothesis Hy 1,
with an estimated improvement around 71.42ms. As for hypothesis H o, we had already
shown evidences of its refutal based on the [.Q.R. improvement.

4.3. Understanding the Impact on GC Behavior

As GCI controls garbage collections and sheds requests, it ends up changing GC’s
throughput and footprint [Sun Microsystems 2009]. To illustrate that, we present in Fig-

ure 4 an aggregated summary of GC interventions considering all experiment runs with
GCI on and off.

200

600

=
15
=]

N
o
=)

Duration (ms)
=
o
o

Duration (ms)

50

N
=}
=)

GCl Off GCI On GClI Off GCI On

(a) Minor GCs (b) Major GCs
Figure 4. Aggregated garbage collection activity
We analyzed the time span of the two garbage collection types: major and minor.

The Java runtime’s heap is managed in generations (young and tenure), which are mem-
ory pools holding objects of different ages. When a generation is full, the JVM triggers



garbage collection. For the young generation, it causes a minor garbage collection. Dur-
ing this process, the JVM moves the surviving objects to the tenured generation. When,
eventually, the tenured generation is full, the JVM triggers a major collection. Major
garbage collections usually last much longer than the minor ones because a significantly
larger number of objects are involved.

Minor garbage collections are represented in Figure 4(a) and it is easy to confirm
that activating GCI leads to shorter garbage collections and also less variability.

Activating GCI also leads to shorter major collections and also less variability
(Figure 4(b)). This happens because our solution triggers minor and major garbage col-
lections when either pool reaches the shed threshold of utilization. By forcing garbage
collection before the the automatic increasing of the generations size, GCI prevents long
runs of the major garbage collection.

4.4. Overhead

We are aware that our approach deals with a trade-off: by shedding some requests to
improve service time we decrease the overall service throughput. Naturally, our solution
could not significantly compromise throughput or CPU load. For this reason, we also
investigated the overhead that GCI generates. We calculated throughput loss as the ratio
between shed requests and total requests (%).

125

4
©
S

I
N}
=}

Throuput Loss (%)
CPU Load (%)

o

[

S

1.15
0.81

0.78

GCl Off GClon

(a) Throughput loss when GCI is on (b) CPU Load

Figure 5. Throughput and CPU load aggregated summary

Figure 5(a) confirms that GCI does impact on throughput but not substantially.
With 95% of statistical confidence, the mean throughput loss is [1.16605%, 1.209268%).
In a nutshell, GCI leads to less than 1.2% throughput loss on average. We consider this to
be a good trade-off given the improvements in performance.

As GCI controls which requests to shed, one might wonder how it impacts on CPU
utilization. Figure 5(b) presents data on this matter. As we can see, GCI leads to a small
decrease in CPU utilization. To be more precise, with 95% of statistical confidence, the
mean CPU load reduced from [84.0%, 84.26%)] to [83.54%, 83.79%)], which is a marginal

impact.



4.5. Threats to Validity

This paper presents preliminary results of garbage collection interceptor. It is limited by
some factors that can jeopardize external validity in the context of the experimental de-
sign. We are confident about our measurements: they were collected using proper instru-
mentation and we discarded warm up phase. However, we still must state the following
threats to external validity:

e We are using one application. We do not know the extent to which the positive
results of this study can be generalized to other applications;

e We focused on Java Virtual Machine. We are confident about the possibility of
implementing our solution in other languages, but we cannot guarantee that the
results of our study are extended to all such languages, especially when we con-
sider the particularities of the garbage collection mechanisms implemented by
other runtime environments;

e One machine configuration. For the sake of simplicity we considered only one
type of server running the application. Different types of servers, with different
memory sizes may lead to different results.

We hope to improve these threats in the future by considering other applications,
languages and server configurations. It is important to mention that another threat would
be that we fixed the workload to a constant load. In real environments, workloads are more
dynamic and less predictable. However, we can consider that there is an auto scaling
system adding and releasing resources from the application dynamically. That would
guarantee that all the servers running are being highly and equally used, as the server we
set up in our experiment.

5. Related Work

Some previous work also tackle the problem of high tail-latency due to the garbage col-
lection done by the runtime environments. We are not aware, however, of a previous
work that provides such simple and easy to use solution to deal with this problem by con-
trolling garbage collection interventions and shedding the incoming requests during these
interventions.

In [Terei and Levy 2015], Terei and Levy defined BLADE, which is an API
that leverages existing failure recovery mechanisms in distributed systems to coordinate
garbage collection and bound latency. They investigated two usage scenarios: an HTTP
load-balancer and the Raft consensus algorithm. In both cases, latency at the tail using
BLADE is up to three orders of magnitude better. In order to take advantage of BLADE,
applications must be modified and use the BLADE API, which excludes all the legacy
applications from bounding latency. When developing an application using BLADE API,
developers need to know about memory management, garbage collection and other de-
tails. Furthermore, BLADE has only been implemented for Go language so far. Our
solution pursues similar goals as BLADE, but by different means. By focusing on HTTP
Services we can provide a much simpler and easy-to-use service, that plugs in the appli-
cation, i.e. it is not part of the application by construction.

In [Maas et al. 2016] authors propose Taurus, which is a mechanism to reduce
tail latency by coordinating garbage collection in a distributed system. Taurus is a JVM



replacement which can run unmodified Java applications and enforces user-defined coor-
dination policies. They evaluated Taurus using two different applications: Spark [65] and
Cassandra [33].

Both, BLADE and Taurus coordinate runtime activities considering the whole
distributed application to avoid service disruptions. These systems leave developers with
the task of programming or describing the coordination itself, which requires knowledge
about the application, its workload, the environment, besides specific tuning. Another
downside of Taurus is that it relies on a modified version of the JVM, which will need
to be updated and maintained as any other component of the system. Our solution is
orthogonal to these solutions, since it focus on coordinating each independent endpoint of
the application independently by controlling GC executions and shedding requests during
garbage collection interventions.

6. Conclusions and Future Work

This paper proposes Garbage Collection Control Interceptor (GCI) - a request interceptor
which aims to control garbage collector interventions to improve its performance impact
on HTTP services. GClI is a load and app-independent technique. It requires a marginal
configuration effort and no understanding of the runtime system’s internals. As a con-
sequence, it is easy to use and port to other languages. GCI relies on vanilla HTTP
specification for load shedding (RFC7231) and it is completely open source.

We evaluated GCI on a stateless HTTP Service with a constant workload. Exper-
imental results showed that GCI significantly (40%) reduces 99.9 service time percentile
and its variation (interquartile range decreased by 82%). That means that our work is a
step towards faster and more predictable service times. Results also demonstrated a very
small negative impact on throughput and CPU load.

Our main future work is to perform a broader evaluation of our approach. That
includes measuring GCI impact on real world HTTP Services, such as Elasticsearch. It
also includes to evaluate GCI implementations regarding other programming languages,
such as Python, Ruby and Go. At last, even though GCI impact on throughput is marginal,
we intend to act on the shed requests to reduce such impact to a minimal one.

Acknowledgments: This work was conducted during a scholarship supported by CAPES
— Brazilian Federal Agency for Support and Evaluation of Graduate Education. This work
is also sponsored by the agreement between UFCG and ePol/PF.

References

Blackburn, S. M., McKinley, K. S., Garner, R., Hoffmann, C., Khan, A. M., Bentzur,
R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S. Z., Hirzel, M., Hosking, A.,
Jump, M., Lee, H., Moss, J. E. B., Phansalkar, A., Stefanovik, D., VanDrunen, T., von
Dincklage, D., and Wiedermann, B. (2008). Wake up and smell the coffee: Evaluation
methodology for the 21st century. Commun. ACM, 51(8):83-89.

Dean, J. and Barroso, L. A. (2013). The tail at scale. Commun. ACM, 56(2):74-80.
Fielding, R. and Reschke, J. (2014). Rfc 7231 - http/1.1 semantics and content.

Gidra, L., Thomas, G., Sopena, J., and Shapiro, M. (2013). A study of the scalability
of stop-the-world garbage collectors on multicores. In Proceedings of the Eighteenth



International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 13, pages 229-240, New York, NY, USA. ACM.

Hettmansperger, T. P. (2011). Robust nonparametric statistical methods. CRC Press.

Humble, C. (2011). Twitter Shifting More Code to JVM, Citing Performance and Encap-
sulation As Primary Drivers.

Jalaparti, V., Bodik, P., Kandula, S., Menache, 1., Rybalkin, M., and Yan, C. (2013).
Speeding up distributed request-response workflows. In Proceedings of the ACM SIG-
COMM 2013 Conference on SIGCOMM, SIGCOMM ’13, pages 219-230, New York,
NY, USA. ACM.

Krishnan, S. T. and Gonzalez, J. U. (2015). Building Your Next Big Thing with Google
Cloud Platform: A Guide for Developers and Enterprise Architects. Apress, Berkely,
CA, USA, 1st edition.

Li, H. (2009). Introducing Windows Azure. Apress, Berkely, CA, USA.

Maas, M., Asanovié, K., Harris, T., and Kubiatowicz, J. (2016). Taurus: A holistic
language runtime system for coordinating distributed managed-language applications.
SIGOPS Oper. Syst. Rev., 50(2):457-471.

Meyerovich, L. A. and Rabkin, A. S. (2013). Empirical analysis of programming language
adoption. In Proceedings of the 2013 ACM SIGPLAN International Conference on
Object Oriented Programming Systems Languages &#38; Applications, OOPSLA 13,
pages 1-18, New York, NY, USA. ACM.

Microsoft (2015). .NET garbage collection notifications api.

Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski, M., Lee, H., Li, H. C., McElroy, R.,
Paleczny, M., Peek, D., Saab, P., Stafford, D., Tung, T., and Venkataramani, V. (2013).
Scaling memcache at facebook. In Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation, nsdi’ 13, pages 385-398, Berkeley,
CA, USA. USENIX Association.

Oracle (2015). Java JMX garbage collection notification api.

Rodriguez, A. (2008). Restful web services: The basics. Online article in IBM Develop-
erWorks Technical Library, 36.

Rumble, S. M., Ongaro, D., Stutsman, R., Rosenblum, M., and Ousterhout, J. K. (2011).
It’s time for low latency. In Proceedings of the 13th USENIX Conference on Hot
Topics in Operating Systems, HotOS 13, pages 11-11, Berkeley, CA, USA. USENIX
Association.

Shapiro, S. S. and Wilk, M. B. (1965). An analysis of variance test for normality (com-
plete samples). Biometrika, 3(52).

Soman, S., Krintz, C., and Bacon, D. F. (2004). Dynamic selection of application-specific
garbage collectors. In Proceedings of the 4th International Symposium on Memory
Management, ISMM ’04, pages 49—60, New York, NY, USA. ACM.

Sun Microsystems (2009). Java SE 6 HotSpot virtual machine garbage collection tuning.



Tene, G., Iyengar, B., and Wolf, M. (2011). C4: The continuously concurrent compacting
collector. In Proceedings of the International Symposium on Memory Management,
ISMM ’11, pages 79-88, New York, NY, USA. ACM.

Terei, D. and Levy, A. A. (2015). Blade: A data center garbage collector. CoRR,
abs/1504.02578.

Ugawa, T., Jones, R. E., and Ritson, C. G. (2014). Reference object processing in on-
the-fly garbage collection. In Proceedings of the 2014 International Symposium on
Memory Management, ISMM ’ 14, pages 59-69, New York, NY, USA. ACM.

Verlaguet, J. and Menghrajani, A. (2014). Hack: a new programming language for
HHVM.



