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Abstract. MapReduce is a parallel computing model where a large dataset is
split into smaller parts and executed on multiple machines. When data are not
uniformly distributed, we have the so called partitioning skew, where the alloca-
tion of tasks to machines becomes unbalanced, either by the distribution function
splitting the dataset unevenly or because a part of the data is more complex and
requires greater computing effort. To solve this problem, we propose a func-
tion based on Simulated Annealing metaheuristic which finds a partitioning that
results in a better load balancing.

1. Introduction

As technologies related to computational clouds, sensors, and scientific computing ad-
vance, larger volumes of data are generated out of those applications, demanding efficient
techniques to store and analyze such data in order to extract relevant information from
them. To meet this need, the MapReduce model was created as a parallel computing
model that distributes a large dataset to run on multiple commodity machines, avoiding
the need of using machines with high processing power, making processing more robust
and scalable. The standard structure of MapReduce is divided in two steps: Map and
Reduce. In the Map phase, the master node takes an input, splits it into smaller subprob-
lems, and distributes it to worker nodes. A worker node processes its subproblem creating
intermediate data, stores that data and signals the master node. In the Reduce phase, the
master node distributes the intermediate data to the workers according to a partition rule.
The workers collect the intermediate data, combine and process them to form an output
to the original problem. This divide-and-conquer process allows MapReduce to process
large data sets on distributed clusters. A MapReduce user only needs to write the map
and reduce functions, which effectively hides the operation of large clusters, providing a
highly scalable and fault-tolerant solution for large data-processing applications. Many
companies, such as Google, Amazon, Facebook, and Yahoo! have been using MapReduce
to process large volumes of data [Zhihong Liu 2016].

Although MapReduce has several advantages, its simplicity may imply in diffi-
culties when processing specific applications or specific data. In most studies involving
MapReduce, it is considered that the data to be processed are balanced, so that its dis-
tribution between the worker nodes using a partitioning function based on its hash code
is balanced in an acceptable way. However, in many real-world applications, data split
between worker machines is not uniformly distributed and the partitioning function based
on hash can not guarantee that the data allocation to the worker nodes will be balanced.
This phenomenon is called Partitioning Skew, which is a problem that occurs when the



distribution of the data among machines is unbalanced or a part of the data needs more
computational power to execute. As a result, in the reduce step, some of the workers
become overloaded while others become idle.

The load balancing problem with skewed data has been investigated in several re-
cent works [Ramakrishnan et al. 2012, Gufler et al. 2011, Kwon 2012]. Most approaches
treat the problem offline, that is, wait for the mapping phase to complete to obtain the
statistics related to the generated intermediate data, or perform a preprocessing on a sam-
ple of the data prior to the map phase to estimate the distribution of the data and execute
an appropriate allocation strategy. However, these approaches lead to a network overhead
and I/O excessive costs. Another strategy is to reallocate the data that requires more com-
putational power to machines with more resources [Kwon 2012]. Although this strategy
improves the performance of large data, it generates a large overhead, mainly when one
considers small amount of data.

In this article, we balance the data by replacing the default MapReduce partition-
ing function with a function that also considers both the load already allocated to each
machine and the size of the data that is waiting for allocation. Our strategy is to minimize
a function that measures the imbalance of the load allocated to each machine. To find a
partition of the data that approaches the ideal balancing, we will use a strategy based on
metaheuristics because we want to solve this problem in an online manner without prior
knowledge about the behavior of the data and it would also be computationally expensive
to explore the entire solution space. Our strategy, called MALiBU, is based on Simulated
Annealing metaheuristic, which is able to find solutions close to the global optimum while
having relatively small complexity.

The remainder of this paper is organized as follows. Section 2 will give a more
detailed view of the MapReduce model and the partitioning skew problem, motivating
this work. Section 3 describes some of the related works in the literature. In Section 4 our
contribution is presented, detailing MALiBU the partitioning algorithms used. Finally,
Section 5 will show the results of the experimental evaluation and Section 6 will present
our conclusions on this work.

2. MapReduce and Partitioning Skew

MapReduce splits dataset into smaller parts in order to process them on multiple machines
[Dean and Ghemawat 2008]. The results of processing these parts are aggregated in order
to generate the solution to the original dataset. In MapReduce the map tasks are res-
ponsible for receiving parts of the dataset, applying a user-defined mapping function and
returning a set of key-value pairs, called intermediate data. The intermediate data are then
distributed to the reduce tasks according to a partitioning function. A reduce task receives
a partition and performs a reduce function to generate the solution for the intermediate
data in this partition. MapReduce is able to significantly reduce the processing time of a
large amount of data because it divides these data into smaller parts and processes them
in parallel across multiple machines.

The MapReduce model was written in different programming languages
[Isard et al. 2007, He et al. 2008, Ranger et al. 2007]. For example, Apache Hadoop
[Hadoop 2006], one of its most popular free implementations, is based on a master-worker
architecture, where a master node makes scheduling decisions and multiple worker nodes



run tasks dispatched from the master.

Figure 1 shows the architecture of the Hadoop MapReduce model.
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Figure 1. Hadoop MapReduce architecture

2.1. Partitioning Skew

Currently, in MapReduce implementations, data are allocated to the reduce nodes accord-
ing to the function Hash(HashCode mod number of reducers). Usually this function
allocates tasks so that the partitions get balanced. When the size of the key-value pairs
are not uniformly distributed, the allocation of tasks becomes unbalanced. This type of
situation characterizes partitioning skew, in which some reduce nodes receive high loads,
increasing the time of response of assigned tasks, and others receive low loads, being idle
because they have more resources allocated than necessary. Many authors studied the par-
titioning skew in mapreduce applications [Kwon et al. 2011, Okcan and Riedewald 2011,
Ibrahim et al. 2010, Atta et al. 2011].

2.1.1. Skewed Key Frequencies

For a number of applications, some keys occur more frequently in the intermediate data.
For example, in word count some words appear more frequently than others, such as
definite articles. In this type of application, the default Hadoop partitioning function will
allocate tasks overloading the reduce nodes that receive most keys.

In the Figure 2, the partitioning skew generated by skewed key frequencies is
illustrated. Notice that the K1 partition has got more intermediate data allocated than the
others. If the key-value pairs (k1, v1l) and (k2, v2) were respectively allocated to partitions
K2 and K3, the partitions would be balanced.
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Figure 2. Skewed key frequencies example

2.1.2. Skewed Key Size

In applications where value sizes in key-value pairs vary significantly, the distribution of
the tasks to reduce nodes may become unbalanced. Thus, although the number of different
values for each key is approximately the same, the execution time may vary between one
key and another, resulting in some idle nodes while others are overloaded.

In the Figure 3, the partitioning skew generated by skewed key sizes is shown.
Although only one key value data is allocated to partition K3, this data takes longer to
execute than the two data allocated to partition K2. In this case, for the nodes to be idle
for the shortest possible interval, it is necessary that the data whose value is v4, allocated
to partition K1 be allocated to partition K2 or K4.
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Figure 3. Skewed key size example

2.1.3. Skewed Execution Times

Some tasks may require more computing power than others. An example where this can
occur is in the page classification algorithm, that classifies a page according to the links
to other pages, which we call neighboring pages. The greater the number of neighbors
pointing to the same page, the longer it will take to process it. In Figure 4, 128 machines
processes a set of pages. During execution a machine takes about five times more than
the average of all others.
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Figure 4. Skewed execution times example

3. Related Work

MALIBU focuses on the partitioning skew caused by skewed key frequency and
skewed key size, since these types of skew are the major factors impacting
job execution time. Recent works [Gufler et al. 2012, Ramakrishnan et al. 2012]
and [Zaheilas and Kalogeraki 2014] show that solving the partitioning skew is not
a trivial task. Many other works proposed solutions for the partitioning skew
[Rosen and Zhao 2012], we detail the most important ones in this section.

3.1. OPTIMA: On-Line Partitioning Skew Mitigation for MapReduce with
Resource Adjustment

OPTIMA [Zhihong Liu 2016] is a resource allocation framework based on the detection
of overloaded reduce tasks due to partitioning skew. The approach sends information
about the allocation of the intermediate data to the controller machine, which uses it to
predict the size of tasks and identify possible overloaded tasks. With this information,
OPTIMA allocates resources for overloaded machines up to the maximum machine load
limit. OPTIMA implements five main components. During the execution of the map
tasks, the Partition Size Monitor sends the size of the intermediate data produced to the
master machine through a modification in the reporter responsible for updating the master.
With the information gathered from the map tasks, Partition Size Predictor uses a linear
regression to predict the size of the partitions in an online manner, so that Overloaded
Task Detector be able to identify the reduce jobs that are overloaded and tells the resource
allocator that these tasks will need more performance. Lastly, the Fine-grained Container
Scheduler increases the amount of memory and CPU used by machines that need higher
performance to the maximum amount available on the machine based on information
about overloaded tasks. Despite the decrease of a job execution time, OPTIMA is not
able to prevent a machine from draining its resources and become overloaded because it
continues to use the standard partitioning function.

3.2. SkewTune: Mitigating Skew in MapReduce Applications

Skewtune [Kwon 2012] monitors jobs in order to identify which ones are responsible
for overloading reduce nodes. With this information, it balances the utilization of the



cluster nodes by repartitioning these jobs, allocating them to other reducers with less load.
The process consists in verifying if a job that is causing the overhead is at a point of its
execution in which it is advantageous to divide its data with a reducer that is underloaded.
This division will only take place if the time needed to divide the data plus the estimated
time remaining for the split job is less than the remaining time of the complete job. This
process is repeated until all tasks are completed or there is no task that can be divided.
At the end of the execution, the data of the same task that has been divided are grouped
in the same machine, in order to keep the result consistency of MapReduce. Although
it works well for complex tasks, overhead caused by the analysis and division of a small
task generates an additional cost that ends up negatively impacting the execution time.

3.3. Online Load Balancing for MapReduce with Skewed Data Input

The work described in [Yanfang Le 2014] presents two key allocating algorithms for the
partitioning phase. The first is a greedy online algorithm that acts on the partitioner dis-
tributing the keys according to the size of the existing partitions giving priority to the
smaller ones. In the second algorithm, it performs the distribution of the keys based on
a preprocessing over the statistics of a priori data. Both algorithms ignore that the key
distribution can vary significantly during a mapping phase, causing an imbalance in the
allocation of the processed keys, failing to avoid partitioning skew in a significant way.

The approaches described as related work show different ways of dealing with
partitioning skew. In the next section we present MALiBU, a meta-heuristic approach
to balance the load allocated to the reduce nodes, avoiding the overload of these nodes
without generating a large overhead in the reduce phase.

4. The MALiBU Method

MALIiBU balances the load received by the reduce nodes following a combinatorial op-
timization problem solution. We assume that the input of this problem is the generated
intermediate data set and the output is a partitioning of the keys of this set into a number
of reducers. Because it is an online solution involving a large amount of data, we apply
metaheuristic approaches to find a sufficiently good solution. In combinatorial optimiza-
tion, by searching over a set of feasible solutions, metaheuristics can often find good
solutions with less computational effort than optimization algorithms, iterative methods,
or simple heuristics [Blum and Roli 2003]. Metaheuristics use a sample of the solution
set, which is too large to be completely covered. MALiBU takes advantage of the Simu-
lated Annealing metaheuristic to partition the keys to reduce tasks. In a metaheuristic, we
look for a solution from small variations of a candidate solution, which can be generated
in a random way. This variation is compared with the candidate solution for evaluation
according to some criterion of acceptance. The best evaluated solution is maintained and
the process is repeated until a stopping criterion is satisfied. In our approach, a candidate
solution is a variation of a partitioning which we will call its neighboring partition. A
partition A is a neighbor of a partition B if they differ by the allocation of exactly one
key. To facilitate the understanding of the metaheuristics, we define below the formal
concept of neighboring partitions and detail later the operation of Simulated Annealing in
the partitioning phase of MapReduce.



Definition 1 (Neighboring partitions). Let X' = {ki, ko, ..., k,} be a set of keys, R =
{r1,7re,...,mm} aset of reducers and P, = {p1,pa,...,0m}> Po = {p1,p2, .., Pm} tWo
partitions from K to 2. We say that P, is a neighbour of P, if and only if just one of the
following conditions is satisfied:

° kiGPxEPl,/{?j Epyepl,kj prePgandk:iprEPg,withl§i<j§n
and 1 < x < y < m for only one pair of keys k; and k;. The partitioning is the
same for the remaining keys in P; and P,

o kicp, € Prandk; € p, € P, withl <i<nand1 <2z <y < m for only one
key k;. The partitioning is the same for the remaining keys in P, and P,

4.1. Simulated Annealing

In metallurgy, annealing is a process for hardening metals or glass by heating and
cooling them gradually, allowing the material to reach a low-energy crystalline state
[Russell et al. 2003]. The Simulated Annealing (SA) can be seen as the process of mak-
ing a ping-pong ball reach the bottom of an irregular surface. If we just let the ball roll, it
can get stuck at a point other than the bottom, because the surface is uneven. So that the
ball can leave the current point and continue rolling, it is necessary for someone to shake
the surface.

In our problem, we want to attenuate the imbalance of the intermediate data allo-
cated to the reducers. The solution based on SA is done as follows. An initial temperature
and a cooling factor are defined. According to the intermediate data given as input, a
key partitioning is created using the standard Hadoop partitioning function. We call this
partitioning current partitioning. From this, we compare the current with a randomly
generated neighbor partitioning. If the neighboring partitioning better balances the inter-
mediate data allocated to each reducer, it becomes the current partitioning. Otherwise,
the neighboring partitioning will become the current partitioning with a probability less
than 1. This probability decreases proportionally to the current temperature. Finally, the
current temperature is updated according to the cooling factor. This process is repeated
until the temperature reaches 0. To facilitate understanding, we will show the pseudocode
of this procedure.

In the Algorithm 1, we aim to reduce the imbalance, which is the load of the
reducer with the highest volume of data allocated. That is, in order to balance the load,
we must partition the keys between the reducers so that the allocated load of the machine
with the highest allocation is minimal.

Our implementation consists of integrating Simulated Annealing to Hadoop, using
it as the partitioning function. The partitioning phase works as follows: as the dataset
is processed and the intermediate data is generated, Hadoop accumulates a portion of
that data and Simulated Annealing is executed to find an allocation that minimizes the
unbalance of the reducers. This process will repeat itself until the end of the map phase.

5. Experimental Results

In this section we compare the performance of MALiBU against the standard partitioning
function of Hadoop YARN 2.7.2. For the implementation of the described algorithms, we
modified the Hadoop YARN 2.7.2 by adding the partitioning functions and bypassing the
native partitioning function.



Algorithm 1 Simulated Annealing
1: procedure PARTITIONER(D,T,C,R)

2: current < partitioning of the keys of D using Hash(HashCode(D) mod |R|).
3: t<T

4: c+ C

5: while 7" # 0 do

6: neighbor < generateNeighbor(current)
7: by < unbalance(current)

8: by <— unbalance(neighbor)

9: if b, < b; then

10: current <— neighbor

11: else if random(0,1) < ¢+ then

12: current < neighbor

13: t=t—c
14: return current

Our experiments were done using Hadoop YARN 2.7.2 with a master node and
nine worker nodes with 8GB of RAM, 4 virtualized CPUs and 80GB of hard drive. All vir-
tual machines are running in the OpenStack cloud environment hosted at the LSBD/UFC.
We executed a WordCount application over a real dataset made up of book reviews from
the Amazon store [McAuley et al. 2015b, McAuley et al. 2015a]. This dataset has an ap-

proximate size of 500MB.
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Figure 5. MALiBU architecture

The MALIiBU execution occurs as follows: the first X % of the intermediate data
generated in the map phase are accumulated in a buffer. Once the processing is done
at X% percent, this data is partitioned according to Simulated Annealing (Figure 5),
which is set to an initial temperature of Y and a cooling factor of 1. After that, each
arriving key is either allocated according to the Simulated Annealing result or it is re-
gularly allocated if it’s a new key. This process repeats until all the intermediate data
is generated and allocated to its due partitions, which in turn, will be executed by the
reduce nodes of the system. For our experiments, we consider X € {5,10, 15,20} and
Y € {5000, 10000, 20000, 30000}. The complete MALiBU architecture can be seen in
Figure 5.

Next, we check the performance of the native Hadoop partitioning functions and



MALIBU for different scenarios. To measure the performance, we calculate the size of

the partition that has the largest amount of data allocated (Y axis) taking into account the
progress of the data map phase (X axis).
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Figure 6. Comparison of several scenarios of data accumulation of the proposed
method using 5000 of temperature with the native Hadoop partitioning function.

In our first scenario, as seen in Figure 6, we set a temperature of 5,000 and we
varied the amount of data accumulated. Our results showed an improvement in the data
balancing in relation to the native Hadoop solution, which is represented by the black line
in Figure 6. As expected, the solutions generated by approaches that accumulate less data

achieved better results, since the temperature of 5,000 is small in relation to the amount
of accumulated data.
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Figure 7. Comparison of several scenarios of data accumulation of the proposed
method using 10,000 of temperature with the native Hadoop partitioning function.

In the next scenario, as seen in Figure 7, we set a temperature of 10,000 and
we varied the amount of data accumulated. Considering the previous scenario, we have
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Figure 8. Comparison of several scenarios of data accumulation of the proposed
method using 20000 of temperature with the native Hadoop partitioning function.

achieved an improvement in all data accumulation approaches, showing that the increase
in temperature reflects in fact a better allocation of the data.

In the next scenario, described in Figure 8, we set a temperature of 20,000 and we
varied the amount of data accumulated. Our results showed a slight drop in the maximum
load allocated to a reduce node in relation to the temperature set at 10,000. In addition,
we notice that as data accumulation approaches show a small difference between them,
we can say that the temperature is generating a result close to optimal in relation to the
accumulated data quantities.
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Figure 9. Comparison of several scenarios of data accumulation of the proposed
method using 30000 of temperature with the native Hadoop partitioning function.

In our last scenario (Figure 9), we set the temperature of 30,000 and we varied
the amount of data accumulated. The results showed a slight improvement in relation to
the results presented in the previous scenario, where we set the temperature at 20,000.
This result indicates a convergence, so that more temperature or more accumulated data



will not be able to generate a better distribution, due to the fact that the data allocation is
already very close to the optimal allocation for the dataset used.
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Figure 10. Comparison of the load allocated to smaller and larger partition in
different scenarios.

In our experiments, as seen in Figure 10, each time MALiBU accumulates 20%
of data, it returns partitions more balanced than all the other scenarios studied. It is worth
mentioning that the comparative approaches have been used against data that results in
partitioning skew, which is the type of dataset that this work proposes to deal with.

6. Conclusion

In this paper, we investigated the performance of the MapReduce model in a scenario
where partitioning skew occurs. This scenario motivated us to mature a balancing ap-
proach of the data allocated to the reducers. By verifying the points in which the standard
MapReduce could be modified so that partitioning skew was attenuated, it was noticed
that altering the partitioning function would be beneficial for the allocation of the data to
the reducers, improving data balancing among nodes.

We developed MALIiBU, a partitioning method that uses the Simulated Annealing
metaheuristics to minimize the imbalance of data on the machines involved in MapRe-
duce. The use of a metaheuristic is interesting because it prevents the space of solutions
to be completely covered, focusing on the most promising solutions. We proposed our
approach using Simulated Annealing because it is a metaheuristic that is able to converge
to a global optimal as long as the chosen temperature matches the complexity of the func-
tion to be optimized. Hill-Climbing-based metaheuristics may cling to local optima and
may return unsatisfactory results. In addition, Simulated Annealing has a relatively low
computational cost, favoring its use in an online algorithm. In our experiments using a
10-node cluster running an actual workload, we were able to improve data balancing per-
formance reducing by 40% the size of the partition that has the largest amount of data
allocated relative to the native Hadoop. When compared to other partitioning methods



in Hadoop, MALIiBU is able to efficiently allocate the data to the reduce nodes. The
counterpoint is that it becomes necessary to have sufficient computational resource avail-
able to use the temperature and data accumulation parameters for the dataset which the
MapReduce application is intended.

Other authors have developed extensions to Hadoop. Among them, we can high-
light [Yanfang Le 2014], which presented greedy partitioning method, which allocates
the data to the partition with the least load. Although this solution finds good results with
balanced data, it is not able to predict the evolution of the keys and, in this way, it can
allocate two heavy keys in the same partition, compromising the load balancing in the
reduction nodes. MALiBU circumvents this problem with a data accumulation strategy,
similar to the sample-based approach described in [Yanfang Le 2014], running Simulated
Annealing in order to analyze the evolution of each key size in a more efficient manner.

As future works, we intend to improve the key size prediction using machine
learning methods, in order to reduce the amount of data accumulated and the tempera-
ture. With this, we can decrease the execution time of the method, making it closer to
the execution time of the native Hadoop partitioning function. Another possibility of con-
tribution is to use a heuristic that is able to find the ideal temperature for the execution
of Simulated Annealing according to the amount of accumulated data, once the temper-
atures used in this work were chosen by experimentation. In this way, the system could
avoid the absence or the wastage of resources when partitioning the accumulated data. In
addition, we want to test the behavior of other metaheuristics, such as Local Beam Search
and Stochastic Beam Search, in order to verify the difference in data allocation, memory
consumption and runtime. Finally, we intend to study the partitioning skew generated by
different execution times of the data. This type of skew comes from a different source and
also requires a different kind of solution.
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