
Remote Routing Approach to Restricted Devices in MANETs
Rodrigo Melo1, Rafael R. Aschoff2, Djamel Sadok1, Eduardo Feitosa3

1Center for Informatics – Federal University of Pernambuco (UFPE)
Pernambuco – Brazil

2Pernambuco Federal Institute of Education, Science, and Technology (IFPE)
Palmares, Brazil.

3Federal University of Amazonas
Manaus – Brazil

{rodrigodma,jamel}@gprt.ufpe.br, rafael.roque@palmares.ifpe.edu.br,
efeitosa@icomp.ufam.edu.br

Abstract. Emergency rescue communication systems are designed to provide
ubiquitous collaboration among mobile devices without the need for a fixed in-
frastructure by using mobile ad hoc networks (MANETs). In emergency and
rescue operations, MANETs are naturally formed by devices with different pro-
cessing and communication capabilities. In this scenario, low power devices
may become overwhelmed with the control overhead and resulting additional
processing required to provide reliable communications among these heteroge-
neous parties. In this paper we propose a strategy where resource constrained
devices can offload part of the routing process to more capable devices partici-
pating in the network. Our proposal have been tested and validated in different
scenarios. The results show how the proposed approach can successfully re-
duce the network overhead without significantly reducing the routing process
efficiency.

1. Introduction
The increasing interest in using mobile devices to establish ad-hoc communication sys-
tems (MANET) has enabled the development of a broad range of applications, particularly
with the advent of new wireless access technologies for connectivity, such as 3/4G, LTE,
and WiMax. However, these new applications typically assume that MANETs are a set
of homogeneous devices, where each node has the same capabilities, which is usually
unrealistic.

MANETs support several types of mobile devices and this is one of its success
factors. This heterogeneity allows great flexibility, however, when devices with limitation
in battery or processing power join the network new problems arise. In this paper, we
concentrate on the routing process issues for restricted devices. For such devices, par-
ticipating in large networks may not be possible due to the routing process that can be
very resource consuming. For example, during the routing process, topology informa-
tion must reach the whole network, which generates a great amount of overhead that can
compromise the performance of these special devices.

The most popular strategy to address this problem is to reduce the routing pro-
tocol overhead, particularly, control packets that consume network bandwidth and other

resources. Works like [Pei et al. 2000] and [Younis et al. 2002] have been proposed with
solutions focusing in performance improvements. However, these solutions aim at the
overall network performance, while our concern is on allowing restricted devices in the
networks. We focus on techniques to save the resources of restricted devices during the
routing decision process so they can participate in the network.

This paper proposes the Distributed Remote Routing (DRR), a strategy to offload
part of the routing decision process of restricted devices to more capable devices. De-
veloped to work on networks running the HTR protocol [Souto et al. 2012], we introduce
a new categorization of HTR nodes: the HTR-Lite (HTR-L) nodes, which indicates the
restricted devices and the HTR-Outsourcing Router (HTR-OR), the more capable devices
that will be responsible for helping the HTR-L nodes in the routing process.

2. HTR Overview
HTR is a routing protocol for MANETs that utilizes a 2.5 cross layer scheme
[Souto et al. 2012]. It abstracts multiple and heterogeneous interfaces and constructs a
self-organized heterogeneous communicating ad hoc network. An HTR node may have
many interfaces, with similar or different technologies such as Wi-Fi, Bluetooth, WiMAX
and LTE, but it has only one IP address.

HTR is based on the OLSR protocol [Clausen and Jacquet 2003] and similarly
includes HELLO and Topology Control (TC) as control messages and defines a special
node, the multi-point relay or MPR, for the control of traffic flooding. From a HELLO
message, a mobile node receives information about its immediate, 2-hop neighbors and
selects MPRs accordingly. A TC message originates at an MPR node announcing who
has selected it as an MPR. In contrast to OLSR, HTR uses additional metric based on
link quality information and node device capabilities to choose MPR nodes. Called
HTRScore, the HTR cost metric is defined considering factors such as the awareness
of link conditions and power efficiency in order to perform path computation.

The HTRScore formula can be seen at (1).

HTRScore(i, j) =
eαi,j

(1− ρi,j)β
∗
Ei
γ

RΘ
i

(1)

Where i is the source node; j is the destination neighbor; ei,j is the transmission
energy required for node i to transmit an information unit to its neighbor j; ρi,j is the
probability to lose a packet sent from i to j; Ri is the residual energy of node i; and Ei is
the initial battery energy of node i.

The symbols α, β, γ and θ represent non-negative weighting factors for each de-
scribed parameter. Note that if all weights are equal to zero, then the lowest-cost path is
the shortest path, and if only γ, and θ are equal to zero, then the lowest cost path is the one
that will require the least energy consumption, considering retransmission or not, regard-
ing the value of β. If γ is equal to θ then normalized residual energy is used, while if only
θ is equal to zero then the absolute residual energy is used. In case all three parameters α,
γ and θ are equal to zero, then only the paths with best link stability are emphasized.

Two main modules compose the HTR framework: the bootstrap module and the
routing module. The bootstrap module is responsible for the start-up and configuration of

Lite

HTR

(a) (b) (c)

HTR

HTR

HTR

Lite

HTR

HTR HTR

Lite

HTR

HTR

HTR

HTR

HTR

Lite

HTR

OR

HTR

HTR

HTR

(d)

Figure 1. HTR Lite steps of the remote routing solution

a node (i.e. assignment of IP address and link layer adaptive configuration). The routing
module manages the routing table and packet forwarding. It uses the Dijkstra Algorithm
to perform path computation, however, the edges of the network graph have a weight
equals to the HTRScore described above. Specific details regarding these modules can be
found in [Souto et al. 2012].

3. Distributed Remote Routing
On a HTR-running network, each node is responsible for building its own routing table
based on information received via the control messages. Each node knows its neighbors
and is capable of deciding the best path to reach a destination. As introduced above, this
may constitute a restricting factor for some devices.

The Distributed Remote Routing (DRR) is our approach to relax this restriction. It
was developed to save resource from these nodes by offloading routing decisions (routing
table calculation) to other devices within the network.

There are three fundamental roles in the DRR process as described below.
• HTR nodes: nodes that run native HTR protocol. They send and receive HTR

control messages (HELLO and TC) and build their own routing table.
• HTR-Lite nodes: restricted devices. HTR-lite nodes do not send HELLO nor

TC messages and do not act as routers. In other words, HTR-Lite nodes will not
appear as a valid entry on the forwarding table of the network nodes. HTR-lite
nodes mount their routing table by sending a table request to HTR-OR nodes.
• HTR-OR nodes: HTR-Outsourcing Router nodes are responsible to provide the

routing table information requested by HTR-Lite nodes. There is no limit regard-
ing the number of HTR-OR nodes participating in the network.
We embedded the DDR in the HTR framework but, as expected, DDR has its own

set of messages and control states. Figure 1 illustrates the protocol operation.

As shown in the figure, the HTR-Lite initiates the operation as soon as it joins
the network (managed by the bootstrap module). The node sends a broadcast request
(discovery message) in search for a HTR-OR (a). When a HTR-OR node receives a
discovery message (b), it replies with its HTRScore directly to the requesting node (HTR-
Lite).

After having received replies from one or more HTR-OR nodes, the HTR-lite
node uses the informed HTRScores as criteria to choose the node that will act as its HTR-
OR. Having selected the HTR-OR the HTR-Lite node sends a Route Request message

to it (c). Finally, upon receiving a route request message, the HTR-OR node sends the
Routing Table Reply message to the requesting node (d).

It is important to emphasize that there is no significant increase of resource con-
sumption by the HTR node that becomes HTR-OR. This is because it will only send its
already calculated routing table to the requesting HTR-lite node.

Since the HTR-OR only sends its own routing table, the HTR-Lite needs to per-
form minor adjustments to such table to adapt it to the point-of-view of the HTR-Lite
itself. The algorithm to make this adjustments was designed to consider the cost of ma-
nipulating the route data without incurring in too much resource consumption. Firstly,
during the second step of the remote routing process (see Figure 1), not just the elected
HTR-OR but all nodes that replied to the Discovery Message are added to the neighbor
table. Then, after receiving the routing table from a HTR-OR, the insert route table al-
gorithm is started. The procedure is described in Algorithm 1. Simply put, the algorithm
verifies the received routing table (line 4) and for every advertised entry (line 6) that has
not already been added (line 7), it changes the next-hop field to the selected HTR-OR
(line 8).

Algorithm 1 Insert Route Table Algorithm
1: procedure INSERTTABLE(routeOR, addrOR)
2: size← routeOR.size()
3: index := 0
4: table← getRouteTable()
5: while index < size do
6: route← routeOR.get(index)
7: if table.hasNoEntry(route) then
8: route.updateNextHop(addrOR)
9: table.insert(route)

10: end if
11: index := index+ 1
12: end while
13: end procedure

In order to comply with the unpredictable nature of the mobile environment, the
received routing table is set to expire after a period and the whole process starts again.
Figure 2 shows the state machine of the lite node in this proposed DRR protocol.

As shown in the figure, there are four states in the lite node: Start, Wait Reply,
Wait Route Table, and Route Table Received. The Start state represents the initial phase,
where the lite node wishes to initiate the remote routing process. After sending a Request
Message, the lite node goes into the Wait Reply state. If the lite node receives no reply,
it will constantly attempt to send another request after a timeout interval. If a reply is
received, the node sends a Select Route message and goes into the Wait Route Table state.
Similarly, at this state the lite node will attempt to retry to send the Select Route message
after a timeout occurs, but only for a limited amount of time. If the route table is received,
the node ends its configurations process; otherwise, it goes into the Wait Reply state to
start the process again. Important to say that this state machine is always running when
entry in network or when the table received expires.

Wait Reply
Start

HTR Lite

Wait

Route Table

Reply Received

/ Send Select

Route

Table

Received /

3x Timeout Expired

/ Send Request

Route

Table

Received

Timeout Expired /

Send Request
Timeout Expired /

Send Select

 Send Request /

Figure 2. State Machine of the remote routing protocol for the Lite node

The server side works as a stateless process, as describe in Algorithm 2. The server
continually listen to received messages (lines 2-3). When the server receives a Discovery
Message (line 5), it sends back a Reply Message (line 6). If the server receives a Request
Message, it sends a Route Reply Message.

Algorithm 2 Server side remote routing process routine
1: procedure RECEIVEMESSAGE
2: while true do
3: message, srcAddress← receiveMessage()
4: type← message.getType()
5: if type = DISCOV ERY then
6: sendScore(srcAddress)
7: else if type = REQUEST then
8: sendReply(srcAddress)
9: end if

10: end while
11: end procedure

4. Evaluation Methodology
In order to evaluate the performance of the proposed protocol, we have used different
scenarios and metrics. This section describes the methodology we used to perform the
evaluation the proposed protocol.

4.1. Metrics
Given that the proposed routing protocol does not change the network behavior, apart
from the process to obtain the routing table, only a few network metrics would have a
possible change on their measurable values comparing to the standard approach. We
chose to evaluate the routing delay, and message overhead, which are better described
below.

Routing Delay. The amount of time a HTR-lite node takes to obtain the routing
table shared by one HTR-OR, after the complete remote routing process was performed.
More specifically, it constitutes the time between the discovery message and the routing

table reply message. As illustrated by Figure2, the process includes intermediate steps,
such as the select and reply messages as well as possible timeouts and reattempts.

Message Overhead. The message overhead is a metric to measure the amount
of network bandwidth save while using the proposed remote routing protocol. Nodes
running the remote routing do not participate in the forwarding of messages nor send
HELLO or TC messages, which saves resources. This metric compares the amount of
traffic generated by networks with and without the remote routing protocol.

These metrics were evaluated using different scenarios, as described in the next
subsection.

4.2. Scenarios
We decided to use two circular topology scenario to evaluate our work. The choice of
such a simple scenario is motivated by the fact that our focus is on the performance of the
HTR-Lite itself, since the approach has a negligible impact on the other components of
the network.

For the first scenario, we configured one HTR-lite surrounded by a group of HTR-
OR. We then vary the number of HTR-OR surrounding the HTR-lite (Figure 3). The
objective of this scenario is to illustrate the viability of using the DRR protocol regarding
the number of nodes available to share routing tables.

Lite

HTR

Lite

HTR

Lite

HTR

HTR

HTR

HTR

HTR

Lite

HTR

HTR

HTR

HTR

HTRHTR

HTR

HTR

Figure 3. Topology of the first scenario

The second scenario is the inverse of the first one. In other words, the second
scenario is configured with a HTR-OR surrounded by a group of HTR-Lite (Scenario 2).
This scenario is important to detect the impact and scalability of the solution by detecting
the number of HTR-lite nodes that overloads or decrease significantly the efficiency of
the HTR-OR node. This scenario is illustrated in the Figure 4.

For both scenarios, in addition to varying the number of surrounding nodes, the
mobility mode of the nodes (static or mobile) of the edge can be configured. These sce-
narios and metrics were implemented in NS-3 simulator which made it possible to arrange
a circular topology to run the experiments a hundred times, for each scenarios. These re-
sults of the experiments executed with the presented scenarios are analyzed and discussed
in the next section.

5. Results and Discussion
As described in Section 4, we decided to evaluate our proposal against different network
topologies and performance metrics. This section presents our finds and discusses the

HTR

Lite

HTR

Lite

HTR

Lite

Lite

Lite

Lite

Lite

HTR

Lite

Lite

Lite

Lite

LiteLite

Lite

Lite

Figure 4. Topology of the second scenario

applicability of the approach giving the results.

We first present the results of the two metrics (Routing Delay and Message Over-
head) for the scenario with one HTR-lite surrounded by a group of HTR-OR (Scenario
1). Next, and similarly, we present the results in the case where a HTR-OR is surrounded
by a group of HTR-Lite (Scenario 2).

In order to present the results of the Message Overhead metric, we used a marked
line chart with two data series. The data series represents the static and dynamic topolo-
gies. The x-axis presents the number of surrounding nodes (HTR-OR in case of Scenario
1 and HTR-Lite in case of Scenario 2). The y-axis shows the Message Overhead Reduc-
tion (MOR), which represents the percentage of reduction in the overhead when using the
DRR protocol. More specifically, we have MOR = 1 − Oddr

Ohtr
, where Oddr is the global

routing control messages overhead when using the DDR and Ohtr is the global routing
control messages overhead when using only the HTR.

On the other hand, to show the results of Routing Delay metric it was necessary
to use two kind of graphs. The first one is a dispersion chart, which represents a grouping
routing delay values of each scenario during one simulation timeline. This chart helps
to visualize the behavior of the metric during the lifetime of a Lite node in the network.
The second chart used to illustrate the routing delay results was a boxplot chart, which
shows the minimum, maximum and average value of routing delay metric in each sce-
nario. This representation goes to show the most limiting values achieved by this metric
in each simulated scenario.

5.1. Scenario 1

Figure 5 illustrate the results for the Message Overhead metric of Scenario 1 when varying
the number of surrounding nodes (HOT-OR) from one to 64.

As shown in Figure 5, the scenario with just two nodes in the network (one HTR-
Lite and one HTR-OR) the Message Overhead Reduction was close to 30% for the static
mobility model and slightly above that when the HTR-OR can freely move. The band-
width save or reduction in the number of control messages can be observed with up to four
or 16 HTR-OR nodes for the static and mobile configuration respectively. As previously
explained, the DDR does not send the Hello or TC messages, which explains the overall
reduction of the control sent in the network up to the above commented points. Since the
wireless medium is shared amongst the participant nodes, the reduced number of mes-
sages sent over the network means a potentially better overall network performance.

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

35%

1 2 4 8 16 32 64

M
es

sa
ge

 O
ve

rh
ea

d
 R

ed
u

ct
io

n
 (

%
)

Number of Nodes

static

mobile

Figure 5. Overhead of messages of scenario 1

As the number of HTR-OR grows larger though, the DDR actually increases the
total number of control messages generated in the network. We have to keep in mind,
however, that this is observed only because we are increasing the number of HTR-OR
while maintaining a single HTR-Lite. In other words, while every new additional HTR-
OR have to deal with some additional control messages required by the DDR, there is
only one node saving resources. Moreover, this increase would only be perceived in the
neighborhood of the HTR-Lite node. Finally, this additional overhead generated in the
neighborhood for larger network stabilizes between 32 and 64 nodes.

The Figure 6 shows the results of the Routing Delay metric for the static config-
uration of our Scenario 1. More specifically, the figure illustrates the observed pattern
for a single node in different network densities where we took the sequential readings of
the routing delay for node one in a single simulation and varied the number of HTR-OR
nodes.

During our preliminary analysis we found out unexpected moments where the
delay were much larger then the usual collected data. We first thought that the mobility
of the nodes could be causing this larger delays, but in the scenario with fixed nodes we
could observe the same pattern. Next, we thought that some missing packets were causing
these high delays. We found out, however, that even when everything went smoothly with
our routing protocol, there would be instances of large delays.

As can be observed in the figure, independently of the network size, the time series
of the routing delay of the node presented cyclical peaks. It turned out that the lower com-
munication layers were causing this unexpected behavior. More precisely, the translation
process between the network layer addresses into link layer addresses performed by the
Address Resolution Protocol (ARP) was the culprit. The entries in the ARP cache con-

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

0.00E+00 1.00E+02 2.00E+02 3.00E+02 4.00E+02 5.00E+02 6.00E+02 7.00E+02

TI
M

E
(S

)

SIMULATION TIME (S)

1x0 2x0 4x0 8x0 16x0 32x0 64x0

Figure 6. Routing delay of static scenario 1

taining the map between the IPv4 addresses and MAC addresses were expiring or absent,
thus requiring an ARP request and reply messages prior to using the IPv4 address.

Giving the specific behavior observed for the static configuration and shown in
Figure 6, we decide to verify if the pattern would remain the same when the nodes are
configured to freely move. As shown in Figure 7, the same pattern can be observed early
on the simulation, but when the nodes are farther apart, the behavior becomes a bit more
chaotic. This behavior is to be expected due to the randomness introduced by the mobility
of the nodes.

Overall, we can argue that the DDR protocol behaved quite well under the stressed
circumstances created for the Scenario 1. It reduced the network overhead in the vicinity
for low-density networks, while not greatly increasing the overhead for highly density
networks. Moreover, we have to remember that we are potentially including nodes in the
network that otherwise would not be able to participate.

5.2. Scenario 2

As previously presented, the Scenario 2 constitutes the inverse topology of the Scenario
1, with a central HTR-OR surrounded by a varying number of HTR-Lite nodes. Figure 8
illustrate the results for the Message Overhead metric of Scenario 2 when varying the
number of surrounding nodes (HOT-Lite) from one to 64.

Contrary to what was observed in Figure 5, the Message Overhead Reduction
increases as the network topology becomes denser. If in the previous scenario the ratio
between HTR-Lite and HTR-OR decreases as the network becomes denser, causing a
decrease in the Message Overhead Reduction; the reverse is observed for Scenario 2. In
other words, the number of HTR-Lite nodes are increasing relatively to the single HTR-

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

3.00E-02

3.50E-02

0.00E+00 1.00E+02 2.00E+02 3.00E+02 4.00E+02 5.00E+02 6.00E+02 7.00E+02

TI
M

E
(S

)

SIMULATION TIME (S)

1x0 2x0 4x0 8x0 16x0 32x0 64x0

Figure 7. Routing delay of mobile scenario 1

OR and, thus, since the HTR-Lite does not send Hello or TC messages, it was to be
expected the reduction of the number of control messages in the overall.

For the second scenario, we were also interested in investigating the unusual pat-
tern (pikes) identified during our experiments. Once more, Figure 9 illustrates a behavior
of a single node in different network densities where we took the sequential readings of
the routing delay for such node. As shown in the figure, the same pattern can be observed,
but it is clearer. The reason for this more deterministic behavior can be explained due to
the fact that the HTR-Lite sends messages in a more expected and cyclic behavior.

In the same setup but with mobile nodes (Figure 10) the results are similar to what
we found in Scenario 1. Once more, it is to be expected, since the the nodes may become
out of reach and latter join again in the same cell, thus presenting a more random behavior.

Our results in both Scenario 1 and Scenario 2 show that our approach does note
incur in significant impact on the network. It may be important to note that in all sce-
narios and configurations, the routing delay did not go above three milliseconds. Such
value may not be practical in real environment, giving the additional time required by
software and hardware related routines, but comparing with the values collected by the
standard approach in the same simulated environment it proves to be satisfactory. Both
Routing Delay and Network Overhead are maintained in moderate levels throughout the
experiments, while we are able to ensure that a new class of restricted nodes become part
of the network.

6. Background
Offloading is the ability to delegate the obligation over some task from one entity to an-
other. It is usually employed to either free one processor that is already fully loaded or to

0%

10%

20%

30%

40%

50%

60%

70%

1 2 4 8 16 32 64

M
Es

sa
ge

 O
ve

rh
ea

d
 R

ed
u

ct
io

n
 (

%
)

Number of Nodes

static

mobile

Figure 8. Overhead of messages of scenario 2

export some task from less capable devices to more powerful ones. It is possible to offload
data traffic, applications, processing (among others) to any device or service available to
handle such tasks. In this paper, we propose the offloading of routing decisions in ad hoc
networks of mobile phones and tablets to servers.

Since with the increasing of the Internet infrastructure routing has become a costly
solution for routers, several solutions have been proposed for wired networks. The Path
Computation Element (PCE) [Farrel et al. 2006] was proposed in 2006, a solution that
provides centralized constraint-based path computation for large, multi-domain networks.
Following, solutions offloading routing to the virtual devices in clouds were proposed
[Wei et al. 2008][Zhu et al. 2008][Karaoglu and Yuksel 2013].Finally, with the advent of
Software Defined Networks (SDN) [Gupta et al. 2014] offloading solutions quickly be-
gan to appear taking advantage of the separation of control plane and data plane. For
example. RouteFlow, uses OpenFlow-based SDN to provide routing services through a
single controller.

The world of mobile networks is even more restricted since mobile devices are
often not capable of handling some processes, because of their limited resources such as
batteries, processing power, storage and bandwidth capacity. In order to save resources
from restricted devices, several solutions have been proposed, not only specific for rout-
ing, but to several other applications [Li et al. 2001][Chen et al. 2004]. Following the
evolution of wired networks solutions, SDN emerged in mobile scenarios with solutions
that allow control plane functions to be separated from the devices.

In 2006, a offloading technique for H.264 video encoder was proposed
[Zhao et al. 2006] because video processing applications are very resource consuming.
They modularize the H.264 video encoder and offload some modules or the whole appli-

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

0.00E+00 1.00E+02 2.00E+02 3.00E+02 4.00E+02 5.00E+02 6.00E+02 7.00E+02

TI
M

E
(S

)

SIMULATION TIME (S)

1x0 2x0 4x0 8x0 16x0 32x0 64x0

Figure 9. Routing delay of static scenario 2

cation to a nearby server. Results are shown in terms of energy saving, proving that nodes
that offload video processing save energy. Later in 2009, the Stanford University released
the OpenRoads [Yap et al. 2009], an open-source platform for wireless innovations based
on OpenFlow. Specifically for offloading routing there is a solution that uses OpenFlow
in wireless mesh networks [Dely et al. 2011], this paper proposes a centralized solution to
provide routing decisions for all mesh nodes, the controller manages several networking
functions, including handling mobility (handover).

Using the concepts of Offloading we propose DRR, a distributed strategy for of-
floading routing decisions of specific restricted devices, the HTR-lite nodes, to other de-
vices. To the best of our knowledge, all the previously proposed solutions differ from
ours, since ours is focused on distributed support to routing. Others, more capable, de-
vices participating on the network assume routing decisions for the HTR-lite nodes.

7. Conclusion and Future Work
In this paper, we have presented a solution to the problem of routing table computation in
heterogeneous ad hoc networks composed of special devices with limited resources. Our
solution is based on the ability to offload the task of routing computation from restricted
devices to more powerful ones.

The solution is successful in saving the resources such as processing power and
network bandwidth. Even though we did not include a specific metric for processing
power, since the simulator used does not provide the feature, we are offloading the rout-
ing table computation, which is a very demanding task. The experiments proved the
bandwidth save at the special restricted nodes and the low routing delay resulting of the
offloading process. Overall, the results of our evaluations were positive and confirm the

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

0.00E+00 1.00E+02 2.00E+02 3.00E+02 4.00E+02 5.00E+02 6.00E+02 7.00E+02

TI
M

E
(S

)

SIMULATION TIME (S)

1x0 2x0 4x0 8x0 16x0 32x0 64x0

Figure 10. Routing delay of mobile scenario 2

potential applicability of the protocol.

We have also identified some limitations in our works, which are working to im-
prove for a next version of the protocol. Currently, all non-restricted HTR nodes function
as outsourced routers, which may not be the desired case. A centralized remote routing
entity helped by proxies could be a better solution in certain scenarios.

We believe that by providing a routing offloading mechanism for ad hoc networks
we may be doing a important step towards the definition of a software defined ad hoc
network.

References

Chen, G., Kang, B.-T., Kandemir, M., Vijaykrishnan, N., Irwin, M., and Chandramouli,
R. (2004). Studying energy trade offs in offloading computation/compilation in java-
enabled mobile devices. Parallel and Distributed Systems, IEEE Transactions on,
15(9):795–809.

Clausen, T. and Jacquet, P. (2003). Rfc 3626. Optimized link state routing protocol
(OLSR).

Dely, P., Kassler, A., and Bayer, N. (2011). Openflow for wireless mesh networks. In
Computer Communications and Networks (ICCCN), 2011 Proceedings of 20th Inter-
national Conference on, pages 1–6. IEEE.

Farrel, A., Vasseur, J.-P., and Ash, J. (2006). A Path Computation Element (PCE)-Based
Architecture. RFC 4655 (Informational).

Gupta, A., Vanbever, L., Shahbaz, M., Donovan, S., Schlinker, B., Feamster, N., Rexford,
J., Shenker, S., Clark, R., and Katz-Bassett, E. (2014). Sdx: A software defined internet
exchange. Proceedings of the ACM SIGCOMM 2014 conference. To Appear.

Karaoglu, H. and Yuksel, M. (2013). Offloading routing complexity to the cloud(s). In
Communications Workshops (ICC), 2013 IEEE International Conference on, pages
1367–1371.

Li, Z., Wang, C., and Xu, R. (2001). Computation offloading to save energy on handheld
devices: A partition scheme. In Proceedings of the 2001 International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems, CASES ’01, pages
238–246, New York, NY, USA. ACM.

Pei, G., Gerla, M., and Hong, X. (2000). Lanmar: Landmark routing for large scale wire-
less ad hoc networks with group mobility. In Proceedings of the 1st ACM International
Symposium on Mobile Ad Hoc Networking & Computing, MobiHoc ’00, pages 11–18,
Piscataway, NJ, USA. IEEE Press.

Souto, E., Aschoff, R., Lima Junior, J., Melo, R., Sadok, D., and Kelner, J. (2012). Htr:
A framework for interconnecting wireless heterogeneous devices. In Consumer Com-
munications and Networking Conference (CCNC), 2012 IEEE, pages 645–649.

Wei, Y., Wang, J., and Wang, C. (2008). Bandwidth guaranteed multi-path routing as a
service over a virtual network. In Intelligent Networks and Intelligent Systems, 2008.
ICINIS ’08. First International Conference on, pages 221–224.

Yap, K.-K., Kobayashi, M., Underhill, D., Seetharaman, S., Kazemian, P., and McKeown,
N. (2009). The Stanford OpenRoads Deployment. pages 59 – 66, Beijing, China.

Younis, M., Youssef, M., and Arisha, K. (2002). Energy-aware routing in cluster-based
sensor networks. In Modeling, Analysis and Simulation of Computer and Telecom-
munications Systems, 2002. MASCOTS 2002. Proceedings. 10th IEEE International
Symposium on, pages 129–136.

Zhao, X., Tao, P., Yang, S., and Kong, F. (2006). Computation offloading for h.264 video
encoder on mobile devices. In Computational Engineering in Systems Applications,
IMACS Multiconference on, volume 2, pages 1426–1430.

Zhu, Y., Zhang-Shen, R., Rangarajan, S., and Rexford, J. (2008). Cabernet: Connectivity
architecture for better network services. In Proceedings of the 2008 ACM CoNEXT
Conference, CoNEXT ’08, pages 64:1–64:6, New York, NY, USA. ACM.

