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Abstract. The IP lookup phase is the core operation in packet forwarding, which
is implemented via a Longest Prefix Matching (LPM) to find the next hop for ev-
ery input address. In this work, we evaluate the use of parallel techniques to
develop a highly optimized IP lookup algorithm that employs Bloom filters and
hash tables. More specifically, we investigate the implementation of our algo-
rithm on multi-core CPUs and on the Intel R© Xeon PhiTM (Intel Phi) many-core
coprocessor. Our analysis includes the efficient parallelization of our Bloom fil-
ters algorithm on both devices, and the experimental results show that we were
able to attain high performance with this solution (over 88 million lookups per
second on a single Intel Phi for IPv6). We also compared the Bloom filters op-
timized solution to an efficient approach based on the Multi-Index Hybrid Trie
(MIHT). This comparison shows that the most efficient sequential algorithm may
not be the best option in a parallel setting. Instead, it is necessary to evalu-
ate the processors characteristics, algorithms compute/data demands and data
structures employed to analyze how the algorithms will benefit from the target
computing device. These findings are also important to new efforts in algorith-
mic developments in the topic, which have been highly focused on sequential
solutions.

1. Introduction
The use of software routers is motivated due to its easy extensivity, programmability, and
good cost-benefit. However, these routers are required to attain high packet forwarding
rates, which is a challenging task that may be reached with more efficient algorithms
and/or with the use of high-performance parallel computing techniques. The calculation
of the next hop for input packets is a core operation in the forwarding phase of routers.
Since the development of CIDR, routers are required to run a Longest Prefix Match-
ing (LPM) algorithm in order to determine the next hop for each received packet. This
task is commonly referred to as IP lookup and is often the performance bottleneck in
high-performance software routers.

In this work, we investigate the Intel Phi coprocessor as a platform for the imple-
mentation of efficient LPM algorithms for IP lookup. The Intel Phi is a highly parallel
platform that supports up to 244 threads, provides 512-bit SIMD instructions, and has a
large memory bandwidth. These characteristics make the Intel Phi an attractive platform
for the implementation of LPM for multiple incoming IP addresses. We have designed a
parallel algorithm that uses Bloom filters and hash tables to efficiently find the LPM for
both IPv4 and IPv6. The implementation leverages the Intel Phi capabilities to mitigate



the main drawbacks of the algorithm — namely, the high costs to compute hashes during
lookup/store operations and the high memory bandwidth requirements. This is achieved
with the use of vectorization to reduce the costs of hashing and thread-level parallelism to
increase concurrency and throughput.

In order to evaluate our algorithm, we have compared the implementation to a
parallel version of the Multi-Index Hybrid Trie (MIHT). The MIHT is a state-of-the-art
sequential lookup algorithm that has been shown to attain better performance than well-
known tree/trie based algorithms: the Binary Trie, the Prefix Tree, the Priority Trie, the
DTBM, the 4-MPT and the 4-PCMST [Lin et al., 2014]. The experimental evaluation of
the algorithms have shown that our optimized Bloom filters algorithm was able to out-
perform the MIHT approach in both sequential and parallel executions on the Intel Phi.
In a parallel execution using IPv4 and IPv6 prefix datasets our Bloom filters optimized
algorithm was, respectively, up to 4.31× and 5.39× faster than MIHT. The results show
that, although the MIHT is a very memory-efficient algorithm, it presents fewer opportu-
nities for optimizations and worse scalability on Intel Phi. For instance, the use of vector
SIMD instructions available in most of the modern device architectures can be leveraged
to improve the Bloom filters approach, but is not effective for MIHT because of the ir-
regular nature of the data structures it uses. The main contributions of this paper can be
summarized as:

• We implement an efficient version of the Bloom filters based LPM algorithm that
fully exploits the Intel Phi capabilities.
• We evaluate the compromises of using the Intel Phi coprocessor and modern CPUs

to the IP lookup problem using two algorithmic strategies.
• We propose a novel approach combining dynamic programming and Controlled

Prefix Expansion [Venkatachary and Varghese, 1998] (DPCPE) to enhance the
performance of IPv6 lookups in the Bloom filters based algorithm.
• We show in our experimental evaluation that the most efficient sequential algo-

rithm may not be the better solution in a parallel setting. Instead, the possibility of
adapting the algorithm to fully utilize the processor features and parallelism can
lead to higher performance.

The rest of this paper is organized as follows. Section 2 describes the Intel Phi co-
processor and related works. Section 3 describes the use of Bloom filters to solve the IP
lookup problem. Section 4 details the algorithm design, including the optimizations, par-
allelization strategies, and relevant implementation details. We experimentally evaluate
our algorithm in Section 5 and present conclusions and future directions in Section 6.

2. Background and Related Work
2.1. Intel R© Xeon PhiTM

The Intel Phi coprocessor is based on the Intel Many Integrated Core architecture
(MIC), which consists of many simplified, power efficient, and in-order computing cores
equipped with a 512-bit vector processing unit (SIMD unit). The Intel Phi 7120P used in
this work has 61 cores with a four-way hyperthreading that leads to the simultaneous exe-
cution of up to 244 threads, and a theoretical peek performance of 1.2 teraflops. Each core
is clocked at 1.333 GHz, has 512 KB private L1 cache, and a L2 cache of about 30 MB
(aggregate for all cores) that is kept fully coherent among cores via a directory tag mech-
anism. The computing cores, caches, and memory controllers are connected through a



high bandwidth bidirectional ring interconnect (352 GB/s). The Intel Phi is also equipped
with 16 GB of GDDR5 of main memory. The combination of the hyperthreading and the
high-bandwidth memory is efficient for hiding memory accesses latency that is important
for memory-intensive applications.

The MIC architecture combines features of general-purpose CPUs and many-core
processors or accelerators to provide an easy to program and high-performance computing
environment [Jeffers and Reinders, 2013]. It is based on a x86 instruction set and supports
traditional parallel and communication programming models, such as OpenMP (Open
Multi-Processing), Pthreads (POSIX Threads Programming), MPI (Message Passing In-
terface), etc. It runs applications in native mode or offload mode. In native mode, the user
directly accesses the coprocessor via SSH connections to run the application within it.
This is possible because Phi runs a simplified operating system. In offload mode, the pro-
grammer selects parts of the application, usually annotating the source code with specific
pragmas, to be automatically transferred and executed on the coprocessor.

2.2. Previous work
The trie/tree-based is a popular class of IP lookup algorithms [Ruiz-Sanchez et al., 2001],
and finding the LPM in these algorithms usually consists of sequentially traversing a se-
quence of nodes. Therefore, these algorithms strive to reduce the number of required
memory accesses as a means to speed up the lookup process. For instance, in order
to achieve that, the Multi-Index Hybrid Trie (MIHT) [Lin et al., 2014] employs space-
efficient data structures, such as B+ trees and Priority Tries [Lim et al., 2010]. Recently,
the use of compressed trie data structures has also been proposed [Rétvári et al., 2013,
Asai and Ohara, 2015]. Nevertheless, trie/tree-based schemes commonly share the char-
acteristic of being memory-intensive. Another interesting class of algorithms for IP
lookup is based on Bloom filters [Dharmapurikar et al., 2006, Lim et al., 2014]. These
algorithms are compute-intensive and may require many hash calculations during each
lookup/store operation. Hashing is used within the Bloom filters as a means to avoid
unnecessary memory accesses to hash tables (where the data is actually stored).

A wide range of hardware architectures has been used to implement IP
lookup algorithms, including CPU, FPGA, GPU and many-cores [Yang et al., 2015].
In [Ni et al., 2015], a Parallel Bloom Filter (PBF) was implemented in the Intel Phi copro-
cessor. PBF was proposed to reduce synchronization overhead and improve cache locality
in many-core platforms. In this work, we also implement an algorithm that uses Bloom
filters in the Intel Phi specialized for IP lookup and, as such, our approach is different
both in the algorithmic and implementation levels. First, PBF uses locks in the Bloom
filters to avoid data races in concurrent update/lookup operations and enforces sequen-
tial consistency by reordering the responses after processing the requests in parallel. Our
approach, in the other hand, is built on top of the ideas of [Dharmapurikar et al., 2006]
and includes several optimizations targeting its efficient execution on the Intel Phi for IP
lookup. Therefore, we have designed a Bloom filters based LPM algorithm specifically
optimized for performing the IP lookup task for both IPv4 and IPv6. As will be presented
in the experimental evaluation, these optimizations are crucial to attain high performance.

3. Bloom Filters for IP Lookup
The use of Bloom filters coupled with hash tables for computing IP Lookups has been
proposed in [Dharmapurikar et al., 2006]. The standard algorithm has been developed



using 32 pairs of Bloom filters and hash tables for IPv4 lookups, whereas this number
would increase to 64 in the case of IPv6. For the sake of simplicity, in the remaining of
this section, we describe the algorithm in the context of IPv4, while modification for its
efficient execution with IPv6 are presented in the next section.

A Bloom filter is an efficient data structure for membership queries with tunable
false positive errors [Bloom, 1970] widely used for web caching, intrusion detection, con-
tent based routing and LPM [Dharmapurikar et al., 2006]. In essence, a Bloom filter con-
sists of a bit-vector used to represent a set of values. A Bloom filter is programmed by
computing hash functions on each element it stores, and by setting the corresponding in-
dices in the bit-vector. Further, to check if a particular value is in the set, the same hash
functions are computed on the input value and bits in the bit-vector structure addressed
by the hash values are verified. The value is said to be contained in the set with a given
probability only if all bits are set. The standard Bloom filter does not support removal of
elements from the set, because it does not control the case in which a bit is set multiple
times due to the insertion of different values whose hashes collide. This is addressed with
the use of Counting Bloom Filters [Fan et al., 2000], which associates a counter with each
entry of the bit-vector to store the number of times a given bit-vector entry was set or un-
set. We have chosen to implement this approach because it provides a fair comparison
with other algorithms that also feature dynamic forwarding tables.

The lookup operations in the standard Bloom filters algorithm are executed within
multiple sets of filters and hash tables — one for each possible IP prefix length. As net-
work addresses in IPv4 are 32-bit long, they require the algorithm to employ 32 Bloom
filters with their respective 32 hash tables. Each hash table stores their corresponding
[prefix, next hop] pairs and any other relevant routing information, such as metric, inter-
face, etc. If a default route exists, it is stored in a separate field in the forwarding table
data structure. Let F = {(f1, t1), (f2, t2), . . . , (f32, t32)} be the set of Bloom filters (fi)
and associated hash tables (ti) that form an IPv4 forwarding table, where (f1, t1) corre-
sponds to the data structures that store 1-bit long prefixes, (f2, t2) corresponds to the data
structures that store 2-bit long prefixes, and so on. In addition, let len(fi) be the length of
the bit-vector of the i-th Bloom filter, where 1 ≤ i ≤ 32. The forwarding table construc-
tion is as follows. For every network prefix p of length l to be stored, k hash functions are
computed, yielding k hash values: H = {h1, h2, . . . hk}. The algorithm uses H to set the
k bits corresponding to the indices I = {hi mod len(fl) | 1 ≤ i ≤ 32} in the bit-vector of
the Bloom filter fl. It also increments the corresponding counters in the array of counters
of fl.

The lookup process is similar to the insertion. Given an input destination address
DA, the algorithm first extracts its segments or prefixes. Let SDA = {s1, s2, . . . , s32}
be the set of all the segments of a particular address DA, where si is the seg-
ment corresponding to the first 1 ≤ i ≤ 32 bits of DA. For each si ∈ SDA,
k hash functions are computed, yielding k hash values for each segment: H =
{(h1, h2, . . . hk)1, (h1, h2, . . . hk)2, . . . , (h1, h2, . . . hk)32}. The element H ′i ∈ H is used
to query the Bloom filter fi ∈ F . The process is as follows: the algorithm checks the k
bits in the bit-vector of fi using the indices I = {hj mod len(fi) | hj ∈ H ′i, 1 ≤ j ≤
k and 1 ≤ i ≤ 32}. The result of this process is a match vector M = {m1,m2, . . . ,m32}
containing the answers of each Bloom filter, i.e., each mi ∈M indicates whether a match
occurred or not in fi. The match vector M is used to query the associated hash tables. The



search begins by sequentially performing queries to the associated hash tables by travers-
ing M backwards, i.e., starting in m32. This is because we are interested in the LPM. If
the algorithm finds the next hop (a true match) for a given DA in the pair (fi, ti), it is the
LPM. As Bloom filters may produce false-positives but never false negatives, when a filter
does not match a segment, i.e., mi ∈ M indicates a mismatch, the algorithm can safely
skip to the next Bloom filter fi−1 (if i ≥ 2) without touching its associated hash table
ti. This process continues until the LPM is found or all pairs (fi, ti) are unsuccessfully
searched. Please, note that false-positives will only lead to extra hash table searches, and
the actual result of the algorithm will be the same regardless of that ratio.

4. Bloom Filters Optimizations and Parallelization
This section describes the optimizations implemented in the standard Bloom filters
IP lookup algorithm, as well as its parallelization targeting the Intel Phi. The
CPU parallel versions employed similar parallelization strategies, but differ with re-
spect to the instruction-level parallelism that used auto-vectorization. The base-
line implementation on which our work is built incorporates the following optimiza-
tions: the use of an array of counters to allow FIB updates, asymmetric mem-
ory allocation proposed in [Dharmapurikar et al., 2006], and Controlled Prefix Expan-
sion (CPE) [Venkatachary and Varghese, 1998] to reduce the number of required data
structures.

4.1. Optimizing the Hash Calculations
Hashing quality is a central performance aspect of the algorithm because it is closely re-
lated to the efficiency of Bloom filters and hash tables. In the Bloom filters data structure,
it affects both the false positive ratio (FPR) and the amount of memory required. With
respect to the associated hash tables, the better the quality of the hash, less collisions are
likely to happen and, as a consequence, the lookup process will also be faster.

In order to improve the algorithm performance we have (i) accelerated the hash
calculations with the use of instruction-level parallelism or vectorization, as discussed
in detail in Section 4.4; (ii) reduced the cost of hashing by combining the output of
two hash calculations to generate more hashes; and, (iii) implemented and evaluated
the reuse of hash values to minimize the overall hash calculations. The reuse affects
both the lookup and update operations. The generation of extra hashes was performed
through the use of a well-known technique that consists of using a simple linear com-
bination of the output of two hash functions h1(x) and h2(x) to derive additional hash
functions in the form gi(x) = h1(x) + i × h2(x). This technique results in much faster
hash calculations and can be effectively applied in the Bloom filters and related data
structures, such as hash tables, without affecting the asymptotic false positive probabil-
ities [Kirsch and Mitzenmacher, 2008]. We have also proposed the reuse of one of the
hashes calculated to search or store a key in the Bloom filter to address its associated hash
table. This avoids the calculation of another hash whenever a hash table is visited.

4.2. A New Dynamic Programming CPE (DPCPE) for Efficient IPv6 Lookup
Another crucial optimization we have implemented for IPv6 is the use of CPE to reduce
the number of required sets of Bloom filters and hash tables in the algorithm. This tech-
nique consists of expanding every prefix of a shorter length to multiple, equivalent, pre-
fixes of a greater length, so that the number of distinct prefix lengths and, consequently,



filters and hash tables, is reduced. In IPv4, we used CPE to expand prefixes into two
groups: G1 ∈ [21–24] and G2 ∈ [25–32]. After the CPE, G1 has only 24-bit prefixes and
G2 has only 32-bit prefixes, and two sets of Bloom filters and hash tables are allocated to
store these prefixes. A Direct Lookup Array (DLA) is allocated to store the next hops of
the remaining prefixes, whose lengths are ≤ 20 bits, using the prefixes themselves as the
indices. Except for the DLA, the lookup process is identical to the standard Bloom filters
(discussed in Section 3). The algorithm sequentially searches the two sets of Bloom fil-
ters and hash tables (starting from G2, since it stores the longest prefixes) and, if the LPM
is not found, the next hop stored in the DLA position indexed by the first 20 bits of the
input address is returned (it may be the default route). This way we are able to bound the
worst-case lookup scenario to two queries (G1, G2) and one memory access (DLA), as
detailed in [Dharmapurikar et al., 2006]. Note that the trade-off of CPE is faster search
on the cost of increased memory footprint, as shown in Table 2.

The previous work on IP Lookup using Bloom filters [Dharmapurikar et al., 2006]
has reported that this technique would not be efficient for IPv6. This is because of the
“strides” between hierarchical boundaries of IPv6 addresses, which would result in a very
high use of memory after expansion. However, we have proposed and implemented an
algorithm based on dynamic programming (DPCPE) that groups prefix lengths and per-
forms the expansion with a limited additional memory demand.

The DPCPE algorithm works as follows. Let L = {l1, l2, . . . , l64} be the prefix
distribution of a IPv6 forwarding table, where li is the number of unique prefixes of length
i (in bits). Given a desired number of expansion levels n, the algorithm uses dynamic
programming to compute the set of lengths to be used in order to minimize the total
number of prefixes in the resulting forwarding table. DPCPE always starts by picking
the length 64, since it is the largest prefix length for IPv6 and, as such, its inclusion is
required for correctness (i.e. every IPv6 prefix can, theoretically, be expanded to one or
more 64-bit prefixes). Let S = {64} represent the initial set of resulting lengths and
C = {1, 2, . . . , 63} represent the initial set of candidate lengths. While |S| < n, the
algorithm iteratively removes an element l ∈ C and inserts it into S. In each iteration,
the length l is selected by mapping a cost function f over all possible sets of lengths and
choosing the length associated with the smaller cost. For instance, in the second iteration
(assuming n ≥ 2), f is mapped over the set Q = {{l, 64} | l ∈ C} and the value l from
the set that resulted in the minimum cost is selected. The cost function f takes as input L
and a set of expansion levels Q′ ∈ Q. It then computes the resulting number of prefixes
after expanding L to Q′. The (maximum) number of prefixes, resulting from expanding a
prefix of length li ∈ L to q ∈ Q′ (such that, i < q), is defined as 2q−i× li. Note that f does
not take into account the problem of prefix capture [Venkatachary and Varghese, 1998],
which happens whenever a prefix is expanded to one or more existing prefixes in the
database. In this case, the existing longer prefix “captures” the expanded one, which is
ignored. Therefore, although DPCPE is not guaranteed to return the optimal solution, it
usually returns solutions that work better in practice for the Bloom filters algorithm than
directly using the database with no preprocessing, as presented in Section 5.5.

4.3. Thread-Level Parallelism (TLP)

Due to its regular data structures, the Bloom filters algorithm exposes multiple oppor-
tunities for parallelism. For instance, in [Dharmapurikar et al., 2006] it was suggested a
parallel search over the two sets of Bloom filters/hash tables and the DLA (associated with



the different prefix lengths) for a given input address, which is mentioned to be appropri-
ate for hardware implementations. In this strategy, a final pass is performed to verify if a
match occur in any of these data structures and to select the next hop. The same approach
could be used for a software-based parallelization by dispatching a thread to search each
data structure. However, IPv4 prefix databases have the well-known characteristic that
prefixes are not uniformly distributed in the range of valid prefix lengths and, as a con-
sequence, it is more likely that a match occurs to prefixes within lengths that concentrate
most of the addresses, i.e., the set of Bloom filter and hash table that stores 24-bit prefixes.
Therefore, computing all Bloom filters in parallel may not be efficient because, most of
the times, the results from the data structures associated with prefix lengths smaller or
greater than 24 bits will not be used. Instead, it is more compute efficient to sequentially
query the Bloom filters and the DLA. The other option for TLP, which is used in our ap-
proach, is to perform the parallel lookup computation for multiple addresses by assigning
one or multiple addresses to each computing thread available. In this way, we can carry
out the processing of each address using the most compute efficient algorithm, while we
are still able to improve the system throughput by computing the lookup for multiple
addresses concurrently. This is possible because the processing of addresses are inde-
pendent and, as such, there is no synchronization across the computation performed for
different addresses. The implementation of the parallelization at this level employed the
Open Multi-Processing API (OpenMP) [OpenMP, 2016], which was used to annotate the
main algorithm loop that iterates over the input addresses to find their next hops. The spe-
cific OpenMP settings used, which led to the better results, were the dynamic scheduler
and chunk size of one.

4.4. Instruction-Level Parallelism (ILP)

The use of ILP is important to take full advantage of the Intel Phi, which is equipped
with a 512-bit vector processing unit (see Section 2.1). We used its SIMD instructions
to efficiently compute the hash values for multiple input addresses at the same time.
The ILP optimization focused on the hashing calculations because it is the most com-
pute intensive stage of the algorithm. The original work [Dharmapurikar et al., 2003]
and previous implementations of algorithms employing Bloom filters to the LPM prob-
lem [Lim et al., 2014, Ni et al., 2015] do not discuss their decisions and reasons on the
hash functions used. Thus, we have decided to implement, vectorize, and evaluate
three hash functions: MurmurHash3 [Appleby, 2011] (Murmur), Knuth’s multiplicative
method [Knuth, 1998] (Knuth), and a hash function named to here as H2 [Mueller, 2006].
Murmur is widely used in the context of Bloom filters, but its original version takes as
input a variable-length string. In order to improve its efficiency, we have derived versions
of it specialized to work on 32-bit (for IPv4) and 64-bit (for IPv6) integer keys. Knuth is
a simple hash function of the form: h(x) = x× c mod 2l, where c should be a multiplier
in the order of the hash size 2l that has no common factors with it. H2 takes as input a key
and mixes its bits using a series of bitwise operations, as shown in Algorithm 1. Although
simple, the H2 hash function has been shown to be effective in practice [Mueller, 2006].

The hash implementations employed the low-level Intel R© Intrinsics
API [Intel, 2015] to perform a manual vectorization of all the hash functions. We
have also evaluated the use of automatic vectorization available with the Intel R© C
Compiler, but the manually generated code has proved to be more efficient.



Algorithm 1: Definition of the H2 hash function.
Input : x {A 32-bit unsigned integer key}.
Output: The computed hash value.

1 x := ((x� 16⊕ x)× 0x45d9f3b
2 x := ((x� 16⊕ x)× 0x45d9f3b
3 x := ((x� 16⊕ x)
4 return x

5. Performance Evaluation
This section evaluates the performance of our optimized Bloom filters algorithm both
for IPv4 and IPv6. Our evaluations include the analysis of parameter impacts to the
performance of the algorithm — namely, the hash functions, FPR and CPE.

5.1. Experimental Setup and Databases
The experiments were performed in a machine equipped with a dual socket Intel R© Xeon
E5-2640v3 CPU (16 CPU cores with Hyper-Threading), 64 GB of main memory, an
Intel R© Xeon PhiTM 7120P coprocessor (described in Section 2.1), and CentOS 7 operating
system. The source codes were developed using C11 and compiled with the Intel R© C
Compiler 16.0.3 for both the CPU and the Intel Phi using the -O3 optimization flag.

Database Location
Originally After CPE

≤ 20 21 − 24 25 − 32 = 20 = 24 = 32

AS65000 - 104,283 516,699 1625 1,048,576 971,555 113,397

DE-CIX Frankfurt 102,984 535,074 9287 1,048,576 1,007,513 209,488

LINX London 100,331 519,503 354 1,048,576 982,940 19,863

MSK-IX Moscow 102,555 528,728 9529 1,048,576 1,004,073 203,360

NYIIX New York 102,085 528,455 3637 1,048,576 1,000,128 151,391

PTTMetro-SP Sao Paulo 103,733 544,703 4095 1,048,576 1,024,899 147,201

Table 1. Characteristics of the IPv4 prefix datasets used.

We used 6 real prefix databases for IPv4, whose characteristics are summarized in
Table 1. The first database, AS65000, was obtained from [BGP Potaroo, 2016], whereas
the remaining databases were downloaded from [RIPE NCC, 2016]. Table 1 presents the
amount of addresses in each database and the total number of prefixes before and after
performing the CPE to group them into sets of 24-bit and 32-bit long prefixes.

For IPv6, we use the AS65000-V6 database collected from [BGP Potaroo, 2016].
IPv6 is still not widely used and this database has only 31,645 prefixes, which are dis-
tributed in 34 distinct prefix lengths. Table 2 shows the effects of applying our DPCPE
on the AS65000-V6 database. Note that, for this database, we can not use less than 3 ex-
pansion levels, since the amount of memory required becomes prohibitively large. Also,
although the algorithm ignores the prefix capture problem (Section 4.2) when computing
the levels, its estimates are very close to the actual results.

5.2. The Effect of the Hash Function and False Positive Ratio
The false positive ratio (FPR) is a key aspect for the effectiveness of a Bloom filter be-
cause it affects the memory requirements and the number of hash calculations per lookup.



Resulting Desired number Expansion levels Estimated number Actual number
database of distinct lengths suggested by the algorithm of prefixes of prefixes

CPE8 8 {24, 29, 33, 38, 40, 44, 48, 64} 61,208 60,261

CPE7 7 {29, 33, 38, 40, 44, 48, 64} 77,700 76,638

CPE6 6 {29, 33, 38, 44, 48, 64} 104,625 103,094

CPE5 5 {33, 38, 44, 48, 64} 385,200 380,217

CPE4 4 {33, 44, 48, 64} 1,185,300 1,166,135

CPE3 3 {44, 48, 64} 650,417,961 —

Table 2. Results of performing CPE in the AS65000-V6 database. There are a total
of 34 distinct lengths and 31,645 unique IPv6 prefixes in AS65000-V6.

We highlight that the FPR does not affect the results of the algorithm, but only the number
of times that a value is informed to be in the associated hash table by a Bloom filter with-
out being. When this occurs, the algorithm will unsuccessfully search in the hash table.
Probing a hash table consists in traversing a linked list, which may become expensive as
the FPR increases. On the other hand, a very low FPR requires a larger number of hash
calculations and a high memory utilization. The FPR is determined by three main param-
eters: the number n of entries stored in the filter, the size m of the filter, and the number k
of hash functions used to store/query the filters. Given a n value, the values m and k can
be derived as detailed in [Bloom, 1970] to attain a desired FPR.

The trade-off between increasing the hash calculations and the application mem-
ory footprint in order to avoid the extra cost of a false positive is complex. Therefore,
we have evaluated it experimentally by measuring the performance in million lookups per
second (Mlps) of various FPRs and hash function configurations. Hash functions are used
in the Bloom filters algorithms for querying the Bloom filters and to address the hash ta-
bles associated to each filter. As such, we are able to use combinations of hash functions
to compute the multiple hashes within a Bloom filter or the single hash that address a par-
ticular hash table. The hash functions used were presented in Section 4, and we employ
the AS65000 prefix database and an input address dataset with 226 random addresses.
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Figure 1. Performance of multiple hash functions and FPRs using 244 threads
in the Intel Phi. The “Murmur + H2” entry means Murmur was used within the
Bloom filters and H2 was used to address the hash tables.



The results presented in Figure 1 shows that the performance of the application is
strongly affected by the FPR and hash functions. As presented, the use of Knuth resulted
in a lower average performance as compared to other methods. The reason for the ob-
served results is that this hash function preserves divisibility, e.g., if integer keys are all
divisible by 2 or by 4, their hash values will also be. This is a problem in Bloom filters
or hash tables in general, where many values will address the same bits in the bit-vector
and only a half or a quarter of the buckets will end up being used, respectively. On the
other hand, Murmur and H2 are more sophisticated functions that provide better statis-
tical distributions, hence all the configurations using any combination of them attained
similar lookup rates. However, the best average performance was reached with 30% of
FPR, where the results are less scattered for all hash functions. Furthermore, the best per-
formance was attained when H2 was used in both stages of the algorithm. This occurs, in
part, because we are able to reuse the hash calculated to probe the Bloom filter to address
the hash table and, as a consequence, hash calculations are saved. Therefore, we use the
configuration of 30% of FPR and H2 for both stages in the remaining experiments.

5.3. The Impact of the Input Addresses (Querying) Characteristics to Performance
In order to investigate the effects of the input addresses on the performance, we performed
the lookups using pseudo-random generated datasets containing 226 IP addresses with
different matching ratios and the AS65000 prefix database. We call matching ratio the
relation between the number of addresses that matches at least one prefix in the database
and the total number of addresses, thus a matching ratio of 80% implies that 20% of
the input addresses do not match any prefix in the database and, as such, end up being
forwarded to the default route. This evaluation intended to vary the characteristics of the
input data and evaluate the algorithms under different configurations.

We ensure that a given address has the same probability to match any prefix stored
in the database, and we also filter out all the IETF/IANA reserved IP addresses. Please
note that a workload for forwarding could include other characteristics, such as the arrival
of packets in bursts. We use a randomized input because it may be considered the worst-
case scenario and it is the most commonly method used in previous works. The lookup
rates obtained for the bloomfwd algorithm on both the CPU and on the Intel Phi are shown
in Figure 2.
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Figure 2. Performance of as matching ratio is varied. The entry 80% means
that this percentage of the addresses match with equal probability a prefix in the
forwarding table, while 20% of them end up in the default route.

As presented in Figure 2, the input querying dataset has little impact in the overall
performance of the application. The reason for that is that the case of an address matching



some prefix in the database is not necessarily faster than the case where the address end up
in the default route, and vice-versa. For example, consider an address that does not match
any prefix in the forwarding table. If no false positives occur, i.e., the two Bloom filters
correctly answer not to look in their associated hash tables, the search quickly finishes
with one additional memory access to the DLA. However, if for another prefix a false
positive occurs in the first, but not in the second Bloom filter, or if there are plenty of
values stored in the searched hash table buckets, then this case of matching will likely be
slower than the former. As such, the speed and good statistical distribution of the hash
function to control the FPR and also minimize the number of collisions in the hash tables
is an important aspect to limit the variations in the performance as a result of datasets
characteristics.

5.4. Scalability and Performance Evaluation: Bloom filters vs. MIHT
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Figure 3. Lookup rate and scalability of the IPv4 algorithms on Intel Phi and CPU
using the AS65000 prefix database and the 80% address dataset.

In this section, we evaluate the performance gains of our optimized Bloom filters
algorithm for IPv4, which we refer here to as bloomfwd, as the number of computing
cores used is increased on the Intel Phi and on the CPU. We compare bloomfwd to a
baseline implementation of the Bloom filters algorithm, introduced in Section 4.1, and
to the Multi-Index Hybrid Trie (MIHT). The difference between baseline and bloom-
fwd is the hash function, i.e., baseline uses the standard C rand function with no vec-
torization [Dharmapurikar et al., 2006, Lin et al., 2014]. The MIHT is a state-of-the-art
software-based algorithm that has outperformed several other popular IP lookup algo-
rithms [Lim et al., 2014]. Our implementation of MIHT for IPv4 (miht) was optimally
tuned according to the parameters suggested in the original work for the (16,16)-MIHT.
The speedups for the IPv6 dataset are similar and were omitted because of space limita-
tions.



The evaluations used the AS65000 database and an address dataset with 80% of
matching ratio. The lookup rates (in log scale) and speedups for both algorithms and
processors are presented in Figure 3. As shown, the performance of miht (≈ 0.46 Mlps) is
better than baseline (≈ 0.31 Mlps) for the sequential execution on the Intel Phi. However,
as the number of computing threads used increases, the performance gap reduces quickly
due to the better scalability of the Bloom filters approach. For instance, the maximum
speedup of baseline as compared to its sequential counterpart is about 61×, whereas miht
attains a speedup of up to 40× when compared to its sequential version. The bloomfwd,
on the other hand, is the fastest algorithm on a single core and is still able to attain better
scalability on the Intel Phi (116×). Also, it is at least 3.7× faster than the other algorithms.
Finally, the difference between the lookup rates of bloomfwd and baseline highlights the
importance of the use of vectorization and the hash function choice to performance.

The analysis of the CPU results show that all algorithms attained very similar
lookup rates at scale in a multithread setup, though they attained different speedups. We
attribute the similar performance of the algorithms on the CPU to the fact that the mem-
ory bandwidth of this processor is much smaller than that of Intel Phi, which limits the
scalability of the solutions that are memory-intensive. However, note that in the sequen-
tial execution, bloomfwd was the fastest, followed by miht and then baseline. This result
further reinforces the importance of the hash function choice to performance and the ef-
fectiveness of the H2 hash function.

5.5. Performance of the Bloom filters IP Lookup on IPv4 and IPv6

This section evaluates the best version of the Bloom filter algorithms on IPv4 and IPv6
prefix datasets in the Intel Phi. First, we present the performance for the 5 remaining
IPv4 prefix databases presented in Table 1 using the querying input dataset with 80% of
matching ratio. The results, presented in Figure 4, show that the performance gains of our
bloomfwd as compared to the miht is about 4× regardless of the dataset used.
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Figure 4. Performance of bloomfwd and miht for 5 IPv4 prefix datasets.

We further evaluate the performance of the Bloom filters algorithm for IPv6, and
the impact of using our DPCPE algorithm. Therefore, we compare the lookup rates of our
implementation (bloomfwd-v6) with the corresponding version of MIHT for IPv6 (miht-
v6). The miht-v6 is equivalent to the (32,32)-MIHT [Lim et al., 2014].

Figure 5 shows the results for the AS65000-V6 with and without the use of
DPCPE for multiple expansion levels and 226 random input addresses. As presented, the
performance of the bloomfwd-v6 algorithm is greatly improved by the use of our DPCPE,
and the expansion with 7 levels is about 5.9× faster than the performance without CPE.
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Figure 5. Performance of bloomfwd and miht for the AS65000-V6 prefix dataset.

This version is also 5.3× faster than the mith-v6 algorithm. If the expansion value is re-
duced, however, the performance of the algorithm degrades because of the higher memory
demands and search cost. The performance of miht-v6 is similar in all cases because, in
the MIHT, routes are grouped by keys in Priority Tries (PTs), rather than prefix lengths
(as in the Bloom filters approach). In other words, the number of distinct prefix lengths
in the forwarding table does not directly affect the performance of MIHT.

6. Conclusions and Future Directions
In this work, we have implemented and evaluated the performance of state-of-the-art al-
gorithms for IP lookup (MIHT and Bloom filters approach) in multi-/many-core systems,
which is a core operation for efficient packet forwarding in routers. The MIHT is known
to be a very efficient sequential algorithm [Lin et al., 2014]. However, it is also very irreg-
ular, which typically leads to reduced opportunities for optimized execution on parallel
systems. The baseline Bloom filters algorithm, on the other hand, is a more compute
intensive and regular algorithm with a less efficient sequential version. Nevertheless, it
offers more opportunities for optimizations, for instance, due to SIMD instructions, and
it is more scalable with respect to the number of computing cores used. As presented
in the results section, our optimized Bloom filters algorithm was able to compute the
next hop for 226 IPv4 and IPv6 input addresses, respectively, in a rate of 70.84 Mlps and
88.29 Mlps. Also, the speedup of 116.2× obtained on Intel Phi motivates the use of the
proposed techniques, along with many-core technologies, in the construction of efficient
software routers. The CPU versions of the algorithms attained good performance but its
low memory bandwidth limits the scalability of the algorithms. The good scalability of
the Bloom filters approach shows that it may be a better option for devices with a large
number of computing cores.

As a future work, we intend to improve the performance of our Bloom filters
algorithm by using the CPU and the Intel Phi cooperatively to perform the lookups. We
also plan to integrate our optimized algorithm in a complete software router, such as Click
or Open vSwitch (OvS).
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