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Abstract. A Pocket Switched Network (PSN) is formed by users carrying 

portable handheld devices such as smartphones and tablets, which store 

messages, carry them from one point to another via physical movement, and 

forwards them when a communication opportunity arises. The success of the 

network thereby depends on the willingness of users to participate. PSN 

protocols tend to subject most of the routing burden on only a smaller set of 

popular nodes. This results in drastic resource consumption on popular nodes, 

and may eventually lead to user dissatisfaction, withdrawal, and performance 

degradation of the network. The key to ensuring fairness in PSN routing lies in 

the ability to estimate the burden on nodes, utilize this knowledge to provide 

an acceptably fair utilization of node resources, and evaluate the level of 

fairness achieved. This paper is concerned with measuring: (i) the burden 

routing impacts on nodes; and (ii) the fairness of routing algorithms based on 

the distribution of this burden. First, we propose a Global Relative Burden 

Detection (GReBurD) mechanism to estimate the burden on nodes. Simulation 

experiments show that GReBurD is non-scenario specific and better infers the 

actual burden on nodes as compared with existing approaches. Next, we 

propose a new metric for evaluating the fairness of PSN forwarding 

algorithms that gives a better interpretation of the level of fairness implied. 

1. Introduction 

Pocket Switched Networks (PSN) are based on the store-carry-forward (SCF) 

communication paradigm, in which messages are stored in node memory, physically 

carried from one point to another via user movement, and forwarded (through an 

available wireless communication interface such as Bluetooth or Wi-Fi) to another node 

when a communication opportunity arises. With respect to SCF-based networks, Mtibaa 

and Harras (2013) define fairness as the relative equality in the distribution of resource 

usage among neighbouring nodes in the network. Therefore, a forwarding algorithm is 



  

absolutely fair if it subjects equal burden (i.e., resource expenditure) on all nodes. 

Absolute fairness leads to undesirable performance degradations in PSNs. This is due to 

the small world nature of the network (Orlinski and Filer, 2012), in which a relatively 

small set of “popular nodes” have more encounter opportunities than others (Tsvetovat 

and Kouznetsov, 2011; Muchnik et al., 2013), thereby causing large variances in 

forwarding ability. Such nodes are often carried by popular users (e.g., politicians) or by 

those who travel around more frequently than others (e.g., deliverymen). 

 Nevertheless, it is important to achieve an acceptable level of routing fairness in 

order to ensure collaboration in PSNs. Since user devices are fairly homogeneous (Pujol 

et al., 2009) in terms of resources such as battery capacity and computational 

capability1, subjecting only few nodes to most of the burden in the network results in 

drastic resource consumption on them, and may eventually lead to user dissatisfaction, 

withdrawal, and performance degradation of the network (Amah et al., 2016). 

Unfortunately, most routing protocols operate in this manner because their forwarding 

techniques and utilities are biased towards popular nodes (Pujol et al., 2009). 

Considering that nodes are owned by humans, who may be unwilling to allocate most of 

their resources to routing, ensuring user participation is paramount. Hence, the success 

of routing solutions in real-world implementation lies in their ability to guarantee an 

acceptable level of fairness by sparingly utilizing the resources available on each node, 

instead of subjecting only few nodes to most of the burden in the network. 

 Besides the small world nature of PSNs, the distributed nature of the network 

makes it even more challenging to achieve fairness. Network designers need to be able 

to estimate the burden on nodes, utilize this knowledge to provide an acceptably fair 

utilization of node resources without significantly compromising network performance, 

and evaluate the level of fairness achieved. Existing approaches infer the burden on 

nodes from buffer information. However, inferring the burden on nodes from buffer 

information limits existing solutions from guaranteeing actual fairness in realistic 

scenarios, especially when other resource constraints (e.g., energy and processing) are 

considered. Focusing on the buffer alone may not achieve the desired level of fairness, 

because there is no guarantee that nodes will have equal buffer sizes. Furthermore, 

buffer occupancy is not a good indicator of how much burden a networking node is 

subjected to, due to the fact that node resources could be overwhelmed even without 

having a significant portion of the buffer occupied. 

 In this regard, our contribution is twofold. With respect to the first contribution 

(cf., Section 2), we analyse existing techniques for estimating the burden on nodes and 

identify their major drawbacks. We then propose the Global Relative Burden Detection 

(GReBurD) mechanism for estimating burden in PSNs without the identified 

drawbacks. Particularly, simulation experiments show that GReBurD is non-scenario 

specific and better infers the actual burden on a node, which is in accordance with 

energy consumption. With respect to the second contribution (cf., Section 3), we 

analyse existing metrics for measuring fairness and point out shortcomings of using 

these metrics to evaluate PSNs. We then propose a metric that is free of the identified 

shortcomings when used to measure routing fairness in PSNs. Our proposal retains all 

the properties of a desirable fairness metric, and allows for a better interpretation of the 

                                                 
1 Note that allocated storage space may be according to user discretion, thus, may vary across nodes. 



  

level of fairness implied. Finally, we present our conclusions and future work in 

Section 4. 

2. Measuring Node Burden in PSNs 

In this section, we analyse existing techniques for estimating the burden on nodes, 

identify major drawbacks in PSNs, propose an improved measure for burden, and 

support our claims through simulation experiments. 

2.1. Existing measures for node burden 

Authors often infer the burden on nodes from buffer information in order to achieve fair 

routing in PSNs. Pujol et al. (2009) forward messages to relay nodes based on the size 

of their message queue in order to balance load among nodes in the network. Grundy 

and Radenkovic’s (2010) forwarding approach prioritizes nodes that have a higher 

percentage of remaining storage capacity, in order to distribute load away from popular 

nodes to less popular nodes. Mtibaa and Harras (2013) infer the burden on nodes from 

the number of messages they can carry, in order to ensure an efficiency fairness trade-

off in forwarding. In order to achieve a tuneable trade-off between efficiency and 

fairness, Akestoridis et al.’s (2014) criterion for accepting a message is based on a 

utility derived from buffer occupancy. 

 Unfortunately, there is no guarantee that users in real-life will allocate fairly 

equal amount of storage space to routing. Therefore, comparing nodes by their buffer 

occupancy may be unfair in certain scenarios. For instance, depending on the amount of 

storage space allocated to routing, a node with 50% buffer occupancy may have 

received more messages and thereby expended more energy than another node with 

75% buffer occupancy. By comparing buffer occupancies, messages continue to be 

directed towards the node with 50% buffer occupancy instead. This leaves a lot of room 

for error in real-world implementation, considering allocated storage resources may not 

be homogeneous after all. 

 This reveals that Akestoridis et al.’s (2014) approach will subject more burden 

on nodes that have assigned more storage space to routing since burden is considered as 

the ratio between remaining storage space and total storage capacity. Grundy and 

Radenkovic (2010) make forwarding decisions based on the percentage of available 

buffer space such that messages are directed towards nodes with less buffer occupancy. 

In a scenario where some nodes have allocated more storage space to routing than 

others, the former will be subjected to unfair treatment (e.g., more energy will be 

consumed from them), which cannot be detected by buffer occupancy. 

 Apart from the issue of different buffer sizes, buffer occupancy is still not a 

good indicator of how much burden a node is subjected to, since other resources could 

be overwhelmed without occupying a significant portion of the buffer. For instance, if 

the rate of receiving and sending messages is high, utilizing a fixed buffer occupancy 

threshold to ensure fairness may not be suitable. In that case, popular nodes may have 

used up all their energy allocated to routing without even reaching the threshold. 

Moreover, unlike the Internet, PSNs are constrained in terms of resources allocated to 

routing. Therefore, Internet-based approaches may not be suitable: even before the issue 

reflects on the buffer, energy usage may have exceeded the allocated quota. 

Unfortunately, most related work is oblivious of energy. Hence, the node continues to 



  

function in the network even after allocated energy would have been exceeded, and the 

actual burden on popular nodes is not detected early enough. 

 Due to differences in the rate of sending and receiving messages, a higher buffer 

occupancy may not always mean higher burden, and vice versa. It is likely for popular 

nodes to have higher buffer occupancy most of the time, since they receive more 

messages. However, this may not always be the case, as popular nodes are also able to 

deliver more messages than less popular nodes due to higher encounter opportunities. 

As a result, depending on the rate of message generation, popular nodes may free their 

buffers faster than less popular nodes, especially when there is a drop in data traffic 

(e.g., after traffic bursts). 

 Detecting the burden on nodes via energy could also come to mind2. However, 

unless the portion of energy allocated to routing can be monitored, overall energy 

consumption (i.e., residual energy) itself is also not a good indicator of the burden on a 

node. The chances that a device is low on battery due to other applications besides 

routing cannot be ruled out in real-life. This implies that determining the burden routing 

has impacted upon a node from residual energy may not be fair. For instance, a user 

conserving his battery for later use may find that most of it has been utilized for routing 

instead, while less would have been utilized if he was less conserving. Hence, inferring 

fairness from buffer occupancy or residual energy is only suitable for evaluation in 

controlled environments such as experimental simulations. To prevent bias in 

performance evaluation, simulation environments can be controlled to assume that 

device resources are consumed through participation in the network alone. Likewise, 

equal buffer size could be assigned to every node. This is however, not true in real-life, 

and should not be used as a basis of designing burden measures intended for real-world 

implementation. To address this gap, we propose an effective mechanism for inferring 

the burden on PSN nodes in Section 2.2. 

2.2. Proposed measure for node burden 

The approach employed here, namely Global Relative Burden Detection (GReBurD), 

determines the burden on a node from transmitted (i.e., received or sent) messages. For 

each node 𝑎, GReBurD maintains a counter for transmissions (i.e., received messages, 

excluding messages for which 𝑎 is the destination, plus sent messages, excluding 

messages for which 𝑎 is the source), 𝑇(𝑎). At the end of every time slot, ∆𝑇𝑏𝑖 (𝑖 ∈
[1, ∞]), the current burden on 𝑎, 𝐵𝑖(𝑎), is computed by Equation 1, where 𝐵𝑖−1(𝑎) 

represents the burden on 𝑎 in the previous slot, ∆𝑇𝑏𝑖−1, if there was one (i.e., if 𝑖 > 1). 

After computing the burden, 𝑇(𝑎) is reset to 0 for the next time slot, ∆𝑇𝑏𝑖+1. Without 

resetting the transmission counter, the burden on nodes does not change even after a 

long period of inactivity. 

𝐵𝑖(𝑎) = {
𝑇(𝑎), 𝑖 = 1

(𝑇(𝑎) + 𝐵𝑖−1(𝑎)) 2⁄ , 𝑖 > 1
                            𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1        

 The burden at a given instant may be used to make forwarding decisions. In that 

case, the instantaneous burden can also be computed with Equation 1 (note that the 

                                                 
2 Note that energy-aware routing solutions consider energy level in order to improve routing performance, 

rather than (achieving fairness by) making routing decisions according to the burden routing itself has 

impacted on nodes. 



  

counter is not reset until the current time slot is elapsed). Based on the proposed 

mechanism, the instantaneous burden on nodes increase as they continue to participate 

in forwarding. At the beginning of a new time slot, the instantaneous burden on nodes is 

reduced since the transmission counter is reset to 0. Hence, the choice of ∆𝑇𝑏𝑖 reflects 

the restoration experienced during the rest periods, such as when a device could be 

recharged, as opposed to periods of high traffic such as rush hours. For this, we have 

selected a period of six hours and leave details of this to future work. This choice is 

based on results from several trials, where we found that it is likely to reset the 

transmission counters when the user is either at home or at work, i.e., when there are 

least transmission activities in the network. 

2.3. Evaluation of proposed measure for node burden 

Our evaluation was carried out in the Opportunistic Network Environment (ONE) 

simulator (Keränen et al., 2009). We assume a scenario in which portable handheld 

devices, carried by mobile users in a city, convey data between static sources (e.g., 

sensors) and destinations (e.g., base stations) placed in strategic locations. Sources are 

situated around homes while destinations are located around bus stops and meeting 

spots in the Helsinki scenario in ONE simulator. Nodes forward messages according to 

the PRoPHET routing protocol (Grasic et al., 2011). For evaluation purposes, all nodes 

are given equal resources in terms of buffer size and initial energy. Since our interest is 

only on energy consumed due to message forwarding, we set scan energy (i.e., energy 

consumed from device discovery), scan response energy (i.e., energy consumed from 

device discovery response), and base energy (i.e., energy consumed in idle state) to 0, in 

order to avoid bias. All mobile nodes move according to the Working Day Movement 

model (Ekman et al., 2008), which presents realistic human movement patterns. The 

parameters used for the simulation setup are summarised in Table 1. 

Table 1. Simulation parameters. 

Parameter Value Parameter Value 

Wireless interface Bluetooth Receive/transmit energy 0.08 mW/s 

Transmission rate 2 Mbps No. of source nodes 80 

Buffer size 10 Mb No. of destination nodes 36 

Message size (uniformly distributed) 10 Kb to 15 Kb No. of buses 18 

Simulation area 7 km × 8.5 km No. of taxis 50 

Initial energy 600 J No. of pedestrians 416 

 We have chosen a simulation duration of 4 days. 1 day is allowed before 

message generation, for warm-up. The warm-up period allows nodes to acquire enough 

routing information to make forwarding decisions according to the routing protocol in 

use – in this case PRoPHET. Data is generated for three days: 1st day, high generation 

rate (1msg/hr per src); 2nd day and 3rd day, low generation rate (1msg/24hrs per src). 

This allows us to investigate the performance of the burden measures under changing 

data traffic rates, as previously mentioned (cf., Section 2.1). Each message is assigned a 

TTL of 1 day, so that node buffers are freed when messages are delivered to their 

destinations, dropped (according to the FIFO policy) due to buffer overflow, or as a 

result of TTL exhaustion. For our proposed GReBurD, we have obtained results with a 

script we have implemented in ONE simulator. With the script, we are able to obtain the 

burden on each node at different points in time. 



  

 We address the following question: "is there a scenario that could render buffer 

occupancy inaccurate for determining the relative burden on nodes due to changes in the 

rate of message generation?" By comparing the results of randomly selected node pairs, 

some pairs verify that buffer occupancy may not always be an accurate representation of 

the burden on nodes. In fact, instantaneous buffer occupancy depends on various 

variables that may not correlate with the relative amount of contribution a node has 

done in forwarding messages, e.g., TTL, the number of destinations that can be directly 

encountered, the queuing policy in use, and routing protocol conditions for dropping 

messages. Figure 1a, 1b and 1c compares three node pairs, Node 39 and 4, Node 41 and 

0, and Node 48 and 5, respectively. During the three days of message generation, the 

second node of each pair (i.e., Node 4, 0 and 5) – which we term as the popular node – 

transmits more messages (i.e., the sum of sent and received messages), and this is 

reflected in their energy level. Hence, the less popular node, carrying more messages in 

its buffer at some point in time does not make its burden exceed that on the popular 

node, unless this continues for a period of time that is able to compensate for the burden 

that the popular node has been subjected to. In addition, higher buffer occupancy on the 

less popular node would mean higher burden only when it has experienced more 

transmissions – note that at this point in time, it is possible for the node with lower 

buffer occupancy to be delivering more messages to destinations, hence, freeing its 

buffer at a faster rate. The figures show that the buffer occupancy on the less popular 

node exceeds that on the popular node for considerable hours (11, 2 and 12 hours for 

Figure 1a, 1b and 1c, respectively), during which false positives – in terms of burden – 

could arise if routing decisions are made solely based on buffer occupancy. 

 

(a) 



  

 

(b) 

 

(c) 

Figure 1. Buffer occupancy, number of transmission and energy level on: (a) 
Node 39 and 4 (b) Node 41 and 0 (c) Node 48 and 5. 



  

 The results in Figure 1 have shown that the instantaneous buffer occupancy may 

not be able to reflect the amount of transmissions a node has experienced, or the energy 

it has expended in doing so. By comparing buffer occupancies in the highlighted 

sections of Figure 1, messages would be directed away from the less popular node and 

towards the popular node at some point in time. Such approaches try to balance the 

buffer occupancy of nodes, hence, achieve fairness in terms of buffer occupancy. 

However, they fail to achieve fairness in terms of the energy consumed in routing, since 

instantaneous buffer occupancy does not always indicate the actual burden on a node. 

By observing Figure 1, the current state of the buffer and snapshots of previous states 

could be used to compute the instantaneous burden. However, there is no guarantee that 

the snapshot of a previous state would be captured at point in time when the buffer 

would be able to reflect the actual burden on the node. 

 

Figure 2. The burden on the nodes according to GReBurD. 

 The results from this experiment makes it easier to imagine how inferring node 

burden from buffer occupancy would be a problem in a scenario where every user's 

device is a potential destination. Popular nodes would then be able to encounter more 

destinations directly and free up their buffers – lecturers and their students, the bus 

driver's device and encounters with passenger devices, sales people who serve a lot of 

customers, etc. Without a steady flow of incoming messages, the buffer occupancy on 

such nodes may drop at a relatively higher rate, thereby rendering buffer occupancy 

momentarily inaccurate for determining the relative burden on nodes. To address this 

issue, our approach considers the number of transmissions within a time frame, and tries 



  

to account for any periods of inactivity between. In other words, our proposed burden 

measure decreases with reducing number of transmissions and vice versa. Therefore, the 

burden on a less popular node in Figure 1 will surpass that on its popular counterpart 

only when the former has done more transmissions and expended more energy. As 

opposed to inferring the burden from the number of transmissions alone, the reduction 

in burden when there is less number of transmissions is able to account for periods of 

inactivity, during which device resources could be replenished (e.g., battery recharge). 

We believe that our proposed GReBurD is also more suitable in real-life scenarios 

because it can cope with the dynamicity of node behaviour. Suppose Node A just joined 

the network. By inferring burden from the number of transmissions alone, it may take a 

very long time for the burden on Node A to reach that on the other nodes, even if it is a 

popular node. With our proposed burden measure on the other hand, Node A would be 

able to catch up in the next counter reset interval. As shown in Figure 1, the burden on 

the less popular nodes never surpasses that on their popular counterpart, even when the 

buffer occupancy of the former exceeds that of the latter. This burden corresponds to the 

number of transmissions and energy expended on both nodes as shown in the figure. 

3. Measuring Routing Fairness in PSNs 

In this section, we analyse the metrics for fairness, point out shortcomings of using 

these metrics to evaluate PSNs, and propose a metric specifically for measuring routing 

fairness in PSNs. 

3.1. Existing metrics for routing fairness 

In PSNs, the fairness metric measures “evenness” of burden distribution on nodes, and 

if not even, indicates how far the distribution is from evenness. According to Jain et al. 

(1984), the index should have the following properties in order to give an intuitive 

understanding of fairness: (i) independent of population size, applicable to any number 

of nodes; (ii) independent of scale and metric, should give the same results across 

different units of measurement; (iii) bounded between 0 and 1, a totally fair and a totally 

unfair distribution should have an index of 1 and 0, respectively; and (iv) continuous, 

ability to reflect any slight change in distribution. 

 Various measures are used to determine the level of fairness among nodes in 

homogeneous networks. Pujol et al. (2009) measure fairness by the fraction of nodes 

that carry out 50% of the total number of forwards in the network. Thus, a larger 

fraction implies more fairness and vice versa.  The metric used by Soelistijanto and 

Howarth (2012) is the ratio of maximum to mean data traffic seen by nodes in the 

network, with a lower value implying a more even distribution of traffic among the 

nodes. In Mashhadi et al.’s (2012) evaluation, fairness is given by the coefficient of 

variation of the total load forwarded by nodes. The index proposed by Mtibaa and 

Harras (2013) is the difference between the message load distribution given by the 

forwarding process and the uniform distribution among nodes.  

 However, none of these measures possesses all the aforementioned desired 

properties of a suitable fairness index. For instance: continuity, the drawback of the 

measures used by Pujol et al. (2009), and Soelistijanto and Howarth (2012) is similar to 

that of the max-min ratio (Marson and Gerla, 1982), as they do not reflect slight 

changes in distribution; and boundedness, the index proposed by Mtibaa and Harras 

(2013) ranges from positive to negative values and the metric used by Mashhadi et al. 



  

(2012) drifts towards −∞ as fairness decreases. As a result, it is not easy to interpret the 

level of fairness implied by the existing measures. In order to meet account for these 

criteria, previous work (e.g., Akestoridis et al., 2014; Fan et al., 2014) use Jain et al.’s 

(1984) index (cf., Equation 2) to measure fairness in homogeneous networks. 

𝑓𝐴(𝑥) =
[∑ 𝑥𝑖

𝑛
𝑖=1 ]2

𝑛 ∑ 𝑥𝑖
2𝑛

𝑖=1

, 𝑥𝑖 ≥ 0                             𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2 

 In Equation 2, 𝑓𝐴(𝑥) is the fairness index of a protocol 𝐴, that distributes 𝑥 

amount of burden to 𝑛 nodes, such that the 𝑖𝑡ℎ node receives a burden 𝑥𝑖.  

Table 2. Fairness of distributing a total burden of 10 to two nodes in a 
homogeneous network according to Jain et al. (1984). 

 
Algorithm and burden distribution 

A B C D E F 

Node 1 10 9 8 7 6 5 

Node 2 0 1 2 3 4 5 

Fairness (%) 50 60.98 73.53 86.21 96.15 100 

 From Table 2, algorithm 𝐴 is totally unfair since node 1 bears the entire burden 

in the network and 𝐹 is totally fair since the total burden is equally distributed between 

both nodes. Thus, 𝑓𝐴(𝑥) is expected to be 0 and 𝑓𝐹(𝑥) is expected to be 1, which 

corresponds to a fairness of 0% and 100%, respectively. However, Jain et al.’s (1984) 

index assigns a fairness of 50% to algorithm 𝐴 – instead of 0% – which is not a suitable 

interpretation of fairness in PSNs. According to Jain et al. (1984), “a distribution 

algorithm with a fairness of 0.1 means that it is unfair to 90% of the users”. This implies 

that algorithm 𝐴 is unfair to only 50% of the nodes, hence, results in a 50% fairness. In 

terms of evaluating fairness in a PSN, however, this scenario would be better interpreted 

as total unfairness, which means a 0% fairness. To account for this, we propose a new 

metric for measuring PSN routing fairness in Section 3.2. 

3.2. Proposed metric for routing fairness 

To illustrate our proposed fairness metric, consider a scenario of six fictitious 

forwarding algorithms, A to F, with 4 nodes each, n1 to n4, that are burdened at 

different extents for each forwarding algorithm (cf., Table 3). The standard deviation 

from the mean burden for a forwarding algorithm, 𝑎, is given by Equation 3. 

𝛽𝑎 = √∑ (𝑏𝑎,𝑖 − 𝐵𝑎)
2

𝑛⁄

𝑛

𝑖=1

                                            𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3 

 Where 𝑛 is the total number of nodes, 𝑏𝑎,𝑖 is the burden experienced by node 𝑖 
running on algorithm 𝑎, and 𝐵𝑎 is the mean burden experienced by a node under 

algorithm 𝑎. Then 𝛽𝑎,𝑚𝑎𝑥, the maximum possible standard deviation for algorithm 𝑎 

(i.e., the standard deviation if only one node bears all the burden under algorithm 𝑎, 

which is also the least fair scenario, such as algorithm F in Table 3), is given by 

Equation 4. 



  

𝛽𝑎,𝑚𝑎𝑥 = √[(𝑏𝑎,𝑡𝑜𝑡𝑎𝑙 − 𝐵𝑎)
2

+ 𝐵𝑎
2(𝑛 − 1)] 𝑛⁄                   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4 

 Where 𝑏𝑎,𝑡𝑜𝑡𝑎𝑙 is the total burden, i.e., sum of the burdens experienced by every 

node in the network. As given by Equation 5, the ratio between 𝛽𝑎 and 𝛽𝑎,𝑚𝑎𝑥 indicates 

the unfairness of algorithm 𝑎. 

𝑈𝑎 =
𝛽𝑎

𝛽𝑎,𝑚𝑎𝑥
× 100                                          𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5 

𝐹𝑎 = 100 − 𝑈𝑎                                           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6 

 If every node experiences equal burden for algorithm 𝑎, 𝐹𝑎 in Equation 6 will 

become 100% (e.g., A in Table 3). Likewise, if only one node bears all the burden, 𝐹𝑎 

will become 0% (e.g., F in Table 3). 𝐹𝑎 also decreases accordingly, the less evenly the 

total burden is distributed among the nodes (e.g., B to E in Table 3). Therefore, 𝐹𝑎 can 

be used to measure the fairness of a forwarding algorithm, 𝑎, in terms of the burden on 

nodes. 

Table 3. Six fictitious forwarding algorithms for describing the working 
principle of the proposed fairness metric and how it interprets fairness. 

Forwarding 

algorithm (𝒂) 

Nodes and burden 
𝜷𝒂 

Fairness; 

𝑭𝒂 (%) n1 n2 n3 n4 

A 12 12 12 12 0 100 

B 13 12 12 11 0.7 96.6 

C 24 8 8 8 6.9 66.7 

D 32 8 4 4 11.7 43.9 

E 47 1 0 0 20.2 2.8 

F 48 0 0 0 20.8 0 

3.3. Evaluation of proposed metric for routing fairness 

Our proposed fairness metric is applicable to any number of nodes, gives the same 

results across different units of measurement, results in 0 and 1 for a totally fair and a 

totally unfair distribution, and has the ability to reflect any slight change in distribution. 

Here, we compare the performance of our proposed fairness metric with Jain et al.’s 

(1984), which is the only one among the existing metrics that possess all the stated 

desirable properties of a fairness metric. As shown in Table 4, we allocate 10 items to 

two nodes according to 6 different allocation schemes. In a PSN scenario, routing 

fairness should be 100% when the two nodes experience equal burden, and both fairness 

metrics are able to reflect this for Scheme 6. On the other hand, burdening only one 

node in a PSN should result to a 0% fairness, which we expect for Scheme 1. With Jain 

et al.’s (1984) metric, Scheme 1, the most unfair allocation scheme, gives a fairness of 

50%, while our proposed metric gives a fairness of 0%. With this behaviour, it is easier 

to give a better interpretation of the level of fairness implied by our proposed fairness 

metric. As shown in Table 4, our proposed fairness metric is able to reflect a totally 

unfair and a completely fair allocation of burden in PSNs. The fairness of a forwarding 

algorithm can be computed from the burden measure we proposed and evaluated in 

Section 2, using the instantaneous burden on each node. 



  

Table 4. Fairness of different schemes for allocating 10 items to two nodes. 

Allocation 

scheme 

Allocated items Fairness metric (%) 

Node A Node B Proposed Jain et al.’s 

1 10 0 0 50.0 

2 9 1 20 61.0 

3 8 2 40 73.5 

4 7 3 60 86.2 

5 6 4 80 96.2 

6 5 5 100 100.0 

 The difference between the two metrics is in their interpretation of minimum 

fairness. First, Jain et al.’s (1984) metric considers the entire population. Hence, the 

extent of fairness interpreted when only one node bears all the burden changes with the 

total population (cf., Figure 3). Although reasonable, fairness never reaches 0%, and 

one is forced to bear in mind the total population in order to fully understand the 

interpretation – since the most unfair scenario could be represented by different values. 

Second, the condition for Jain et al.’s (1984) metric to give 0% fairness is when the 

numerator of Equation 2 equals 0. This only occurs when negative burden values are 

considered, i.e., 10 and -10 gives a 0% fairness in this case. However, since burden 

values are usually non-negative, Jain et al.’s (1984) metric may require them to undergo 

specific normalization processes in order to be bounded between 0 and 1 (e.g., 

representing 10 and 0 by 5 and -5, respectively). 

 

Figure 3. Fairness according to our proposed metric and Jain et al.’s (1984). 

 Considering that instantaneous burden on nodes changes over time, burden at 

different points in time may have to be averaged for each node in order to obtain the 

actual fairness of a routing algorithm. Using this method and a granularity of 3600 

seconds, we are able to compute the fairness of the scenario in Section 2.3 with our 

proposed metric and Jain et al.’s (1984) metric as 95.44% and 44.54%, respectively. 

4. Conclusions and Future Work 

In a Pocket Switched Network (PSN), portable handheld devices, such as smartphones 

and tablets, store messages, carry them through user movement, and forward them to 

other devices when a communication opportunity arises. The network thus, depends on 

the willingness of users to participate and share their devices as routers. Due to the 

versatility of portable handheld devices, the availability of required resources is limited. 

Furthermore, users may not be willing to shed all their resources on behalf of the 

network. Therefore, it is important that PSN protocols be as fair as possible by sparingly 

utilizing the resources available on each node instead of subjecting most of the routing 

burden to only a few set of popular nodes. Overlooking fairness results in drastic 

resource consumption on popular nodes, and may eventually lead to user dissatisfaction, 

withdrawal, and performance degradation of the network.  



  

 In order to ensure fairness in PSN routing, network designers need to be able to 

estimate the burden that has been impacted on nodes, utilize this knowledge to provide 

an acceptably fair utilization of node resources, and evaluate the level of fairness 

achieved. Existing approaches for ensuring routing fairness rely on buffer occupancy to 

indicate the level of burden on nodes. Unfortunately, as experiments in Section 2 have 

revealed, buffer occupancy may not always be able to reflect the amount of burden that 

a node has been subjected to. In this regard, we have proposed GReBurD, a mechanism 

that estimates the burden on PSN nodes, and evaluated its performance in ONE 

simulator. GReBurD is simple yet effective, as it is non-scenario specific and better 

infers the actual burden on a node as compared with existing approaches.  

 We also analysed existing metrics for measuring fairness in the distribution of 

burden among nodes. We identified that most of the metrics fail to satisfy the desirable 

properties of a fairness metric, while the most accepted metric leaves room for 

improvement in terms of interpreting the level of fairness implied. In this regard, we 

have proposed a new metric with which network designers can evaluate the fairness of 

PSN forwarding algorithms. The proposed metric possesses all the desirable properties 

of a fairness metric, and also gives a better interpretation of the level of fairness implied 

in PSNs. 

 Future work includes a distributed version of GReBurD that can locally estimate 

the relative burden on a node, without requiring synchronization between devices. 

Future work also includes investigating the impact of different reset intervals on the 

performance of GReBurD. For the future version, we also consider a means of resetting 

the transmission counter at optimum periods detected from device activity history, 

instead of selecting fixed intervals. We also have planned to evaluate the GReBurD in a 

real-life scenario. 
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