
Quantifying Node Security in Wireless Sensor Networks under
Worm Attacks

Alex Ramos1, Breno Aquino1, Raimir Holanda Filho1, Joel J. P. C. Rodrigues1,2,3

1Graduate Program in Applied Computer Science (PPGIA)
University of Fortaleza (UNIFOR) – CE – Brazil

2National Institute of Telecommunications (Inatel) – MG – Brazil

3Instituto de Telecomunicações, Universidade da Beira Interior, Portugal

{alex.lacerda, brenoaquino}@edu.unifor.br,

raimir@unifor.br, joeljr@ieee.org

Abstract. The peculiar characteristics of wireless sensor networks (WSNs)
make them vulnerable to physical attacks. Once a sensor node is physically
captured by an adversary, it can be modified not only to perform malicious ac-
tivities to disrupt network operation but also to propagate malicious worms to
infect other nodes. In the face of such a threatening scenario, the system ad-
ministrator needs to be aware of which nodes may have been compromised, so
that appropriate countermeasures can be taken in a timely fashion. This paper
presents the Sensor Security Status (S3), a security metric model for estimating
in an online manner the probability that a sensor node has been infected, based
on both the interaction among nodes and the alerts from the intrusion detec-
tion system (IDS). Simulation results show that S3 can accurately estimate node
security level with low performance overhead and power consumption.

1. Introduction
The situational awareness provided by security metrics is essential to help system ad-
ministrators take informed decisions regarding the security status of a network and its
components [Zonouz et al. 2015]. In wireless sensor networks (WSNs), a metric that is
able to quantify the security level of sensor nodes can be used, for example, to identify
which nodes should be trusted (to provide reliable data) or which nodes need careful at-
tention from attack response mechanisms. Ultimately, the security level of nodes can be
used to determine the security status of the entire WSN and the sensor data it provides for
users [Ramos and Filho 2015].

Although several security metrics have been proposed for traditional networks
[Pamula et al. 2006, Wang et al. 2007], the unique characteristics of sensor nodes make it
impossible to directly apply those metrics to WSNs. This requires security metrics espe-
cially designed to quantify security based on the specific attack types and vulnerabilities
of sensor networks [Ramos and Filho 2015]. In particular, the resource constraints, and
deployment in open areas make sensor nodes vulnerable to physical attacks. In this type
of attack, an adversary captures a node and retrieves secret information from its memory
in order to gain access to the network. In addition, the adversary can compromise the
captured node to make it perform several malicious activities in the WSN (e.g., routing
attacks like sinkhole, misdirection, etc) [Walters et al. 2007].



To easily gain full control of the network, the adversary may also attempt to have
the captured node propagate malicious worms to compromise more nodes via wireless
communication. Once a node is infected by the worm, it will be able to both behave
maliciously (e.g., carry out routing attacks) and re-propagate the worm to infect other
nodes [Francillon and Castelluccia 2008, Haghighi et al. 2016]. This makes worms one
of the most devastating types of attack.

To detect misbehaving nodes, an intrusion detection system (IDS) can be deployed
in the WSN [Raza et al. 2013]. Although IDSs are usually not capable of identifying all
intrusions that occur (because the dynamic operation of WSNs may make it difficult to
distinguish normal behavior from malicious behavior), the malicious nodes that the IDS
is actually able to identify indicate that the network is under attack and, consequently, that
other nodes may also have been compromised.

Therefore, to effectively portray the current security status of nodes and provide
administrators with useful information when attacks are occurring, a security metric for
WSNs should consider two main factors: (1) benign nodes can be compromised by ma-
licious nodes (i.e., worm attacks); and (2) to avoid that some compromised nodes go
undetected, the intrusions that the IDS is able to identify can be used to predict other in-
trusions. Intuitively, the greater the number of malicious nodes the IDS detects, the higher
the chance that other nodes have also been compromised.

The few existing security metrics for WSNs ([Anand et al. 2005,
Ramos and Filho 2015]) fail to handle these aspects, because they either ignore
IDS alerts or disregard the fact that a node can be compromised by other nodes. To
address those limitations, this paper presents a security metric model called sensor
security status (S3). The S3 model uses IDS alarms received in real-time to estimate how
much the security level of each sensor node of a WSN has been affected by intrusions.
This assessment is performed using an attack propagation graph (APG). Considering
that adversaries can take advantage of the network communication pattern to propagate
worm attacks [Ho 2015], the APG captures how nodes can compromise others through
their communication behavior.

The attack propagation graph is automatically constructed during an initial config-
uration phase when sensor nodes behave normally. Then, the APG is transformed into a
Bayesian network (BN) so that inferences about the security status of nodes can be made.
More precisely, when a new alert is raised by the IDS, a belief propagation algorithm, the
Gibbs sampler [Casella and George 1992], is applied to compute the probability that each
WSN node has been affected by the intrusion and has become compromised.

The remainder of this paper is organized as follows. Section 2 presents system
models and assumptions. Section 3 describes the proposed S3 model. Section 4 provides
an evaluation of S3. The past related work is reviewed in Section 5. Finally, Section 6
concludes this paper.

2. System Model and Assumptions
This section presents network, attack, and security models, as well as other assumptions
considered.

2.1. Network Model
The base station (BS) is assumed to be a central command node with no resource con-
straint problem and it cannot be compromised by attacks. it is also assumed that the WSN



is comprised of static nodes that periodically send sensor readings to the base station by
means of a multi-path routing protocol such as the standardized Routing Protocol for Low
Power and Lossy Networks (RPL) [Winter et al. 2012]. In RPL, a destination-oriented
directed acyclic graph (DODAG) is created to enable message forwarding from sensor
nodes to the DODAG root (i.e., the base station). Each node knows its RPL-parents but
has no information regarding its children. Every node periodically chooses a preferred
PRL-parent to forward its messages, as shown in the left hand side of Fig. 1. The pre-
ferred RPL-parent of each node is chosen from the parent set and is periodically updated
according to some predefined routing metrics (e.g., remaining energy, link quality).

In the physical and link layers, sensor nodes are assumed to implement the IEEE
802.15.4 protocol which is the de facto standard for low power and lossy wireless net-
works such as WSNs.

2.2. Attack Model

WSNs can be target of several types of attack [Walters et al. 2007]. S3 assumes that
attacks can be initiated from node capture. A node that is physically captured by
an adversary can perform malicious activities to disrupt network operation. Those
activities include attacks such as selective forwarding, sinkhole, and data alteration
[Raza et al. 2013]. In addition, a compromised node can transfer data packets with mali-
cious code to compromise its neighbors (worm attack) [Francillon and Castelluccia 2008,
Haghighi et al. 2016]. This worm propagation process can repeat itself and lead to the
compromise of the whole network if countermeasures are not taken [Ho 2015]. Therefore,
an adversary can compromise an entire WSN with a single node capture. It is important
to note that researchers have developed practical worm attacks on both Harvard architec-
ture (e.g., Mica motes) [Francillon and Castelluccia 2008] and Von Neumann architecture
(e.g., TelosB) sensor devices [Giannetsos et al. 2009].

To attain their objective of maximizing the amount of compromised nodes, worms
can apply different propagation strategies. Although broadcasting a worm to all neighbors
may seem to be the best strategy, it can result in severe congestion of network traffic and
hence decrease, or even stop, the propagation rate [Khayam and Radha 2005]. Therefore,
we assume an intelligent worm, which seeks to maximize the number of infected nodes by
using the normal communication pattern of the network to propagate itself, as discussed
in [Ho 2015]. In a RPL-based WSN, this could be accomplished by making compromised
nodes transmit the worm only to the current preferred RPL-parent. This strategy is also
useful to avoid the worm propagation from being easily identified by any worm detection
mechanism that could eventually be present in the network [Ho 2015].

2.3. Security Model

The S3 model assumes the existence of an IDS on the WSN. IDSs such as SVELTE
[Raza et al. 2013], for example, can detect compromised nodes that perform malicious
activities (e.g., sinkhole, data alteration, etc.). A worm detection mechanism, such as the
scheme proposed in [Ho 2015], may be present in the network as well. S3 also assumes
the existence of response mechanisms that may attempt to recover malicious nodes de-
tected by the IDS. Node recovery might be achieved in various different ways. A simple
recovery approach would be to reload the node’s program [De et al. 2009].



3. Sensor Security Status Metric
The goal of S3 is to automatically evaluate the security level of each sensor node in an
online manner so as to provide awareness of how secure the network is. The intuition
leveraged by S3 is that when a malicious node is identified by the IDS, it is possible that
this node has been infected by a worm that have already managed to infect other nodes.
Therefore, by using IDS alerts as evidence that an attacker is present in the WSN, S3
attempts to predict future attacks or attacks that may have already occurred but have not
been detected by the IDS (yet).

To do so, S3 uses an attack propagation graph to assess how a worm could take
advantage of the communication pattern of nodes to spread itself through the network.
The APG, which is automatically built during an initial configuration phase, captures
the communication dependencies among neighboring sensor nodes. After this phase,
the APG is then turned into a Bayesian network that is combined with real-time IDS
alerts by means of a node compromise dissemination analysis procedure to estimate the
probabilities that sensor nodes have been affected by an attacker.

More specifically, the security measure provided by S3 for each node indicates
the probability that the node has been compromised by a malicious worm given that one
or more compromised nodes have been detected by the IDS. Accordingly, the security
measure provided by S3 is a real value lying between 0 and 1 (inclusive). A larger S3
value indicates less security. Every time the current system state changes, i.e., when a
new alert is raised by the IDS or a malicious node is recovered, then the node security
measures provided by S3 are updated. In the following, the formalism and mathematical
models used to compute S3 are presented.

3.1. Attack Propagation Graph
The APG is a directed acyclic graph which captures all possible paths that sensor nodes
can use to forward messages to the base station. Each vertex in the APG represents a
sensor node and a direct communication dependency between two nodes exists if data
packets (messages) flow from one node to the other, in the direction of the base station.
This relationship is represented in the APG by an arrow (directed edge) between the two
nodes. For example, if node nj receives sensor data from node ni, it is said that node
nj is dependent on ni, which is represented as ni → nj . Each arrow is labeled with
a probability value Pr(ni → nj) that indicates the fraction of times node ni forwards
messages to the base station through nj .

The APG of a sample RPL-based WSN is shown in the right hand side of Fig. 1.
The probabilities on arrows represent Pr(ni → nj) values. For example, node E forwards
sensor data to the base station through nodes A and B with probabilities 0.85 and 0.1,
respectively. In other words, A was the preferred RPL-parent of E 85% of the time, while
10% of the time B was the preferred RPL-parent.

Notice that the APG only represents the fraction of messages successfully deliv-
ered to next-hop neighbors. This means that, due to packet loss, the Pr(n→ .) values of
a given node n may not sum up to 1. For example, while 0.95 of E’s messages have been
successfully delivered to nodes A and B, 0.05 have been lost (i.e., 1− (0.85+ 0.1)). This
allows the APG to capture the lossy behavior of WSN’s communication links.

Generation of the APG: To obtain the information required to build the APG, an
information collection agent (ICA) is installed in each sensor node. During the initial



configuration phase, this agent maintains a variable that counts the number of messages
the node has successfully delivered to each of its parents. To do so, the agent periodically
sends dummy messages to the current preferred RPL-parent of the underlying node. Since
RPL periodically chooses a new preferred parent from the parent set of each node, when
the configuration phase terminates, the counters stored by the agent will correspond to the
number of times each parent was chosen as the preferred parent.
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Figure 1. RPL DODAG and corresponding APG of sample WSN.

The number of messages lost is also stored. To accomplish this, ICA interacts with
the link layer protocol. Since the IEEE 802.15.4 is an acknowledgment-based protocol,
ICA knows that the node’s messages have been successfully delivered to the preferred
parent if an ACK frame is received by the link layer. On the other hand, if an ACK is
not received by the sender after a predefined threshold time (and a specific number of
retransmissions), the link layer considers that the message has been lost. In this case, the
lost messages counter of the sender is incremented by ICA.

In the end of the configuration phase, each sensor node sends its counters to the
base station along with their associated node IDs. Specifically, a counter message sent to
the base station by a given node A contains the ID of A, the IDs of A’s RPL-parents and
their respective (message delivery) counters collected by ICA. The counter message also
contains the number of lost messages.

As soon as the counter messages of nodes arrive in the base station, they are parsed
in order to generate a frequency DAG, which is similar to the APG but with message coun-
ters in the edge labels, rather than probabilities. When all counter messages are received,
the resulting frequency DAG is then converted into an APG. This is accomplished by con-
verting the frequency labels into probabilities, which is done by dividing each frequency
label by the total number of messages sent by the source node (i.e., the total successfully
delivered messages + the number of lost messages).

It should be highlighted that ICA only runs on sensor nodes during the initial
configuration phase. Moreover, all other steps performed by S3 are performed in the base
station, namely, frequency DAG generation, APG generation, BN generation, and BN
inference. Furthermore, the number of dummy messages sent by ICA can be decreased



since ICA can take advantage of the sensor readings that are periodically sent by the nodes
to the base station (as discussed in Section 2). Depending on the frequency those sensor
readings are sent, ICA can maintain its counters updated even if no dummy messages are
sent. Therefore, the overhead added by ICA to the WSN is as low as possible.

3.2. Bayesian Network
To model how worms can propagate by taking advantage of the communication pattern
of sensor nodes, the APG is translated into a Bayesian network (BN) that captures the
probabilities that each node can be compromised by other nodes. More precisely, each
APG vertex is modeled as a Bernoulli random variable representing the security state
of a node, i.e., 1 (True) if the node is compromised, or 0 (False) otherwise. Since it is
assumed that worms propagate according to the network communication behavior, each
arrow will represent a cause-consequence relationship between two nodes, meaning that
one node can be compromised by the other. Each arrow probability Pr(ni → nj) will
then correspond to the probability that node nj gets compromised by a worm sent by
ni (in the case that ni has been directly or indirectly compromised by an attacker). For
example, if ni is a compromised node and Pr(ni → nj) = 0.85, then nj has 0.85 chance
of being compromised by ni since this number represents the probability that nj receives
a message (containing worms) from ni (i.e., , the probability that nj is the preferred RPL-
parent of ni).

Since each node in the BN is directly compromised by its parent nodes (source of
incoming arrows1), a conditional probability table (CPT) is created (with the aid of arrow
probability values) and associated with each node. The CPT in a given node n stores the
probability that this node gets compromised (or not) given different combination of states
of its BN-parent nodes Pa[n]. In other words, the CPT corresponds to the conditional
probability distribution Pr(n|Pa[n]). Formally, let Pr(n) = 1 − Pr(n). For pin ∈
Pa[n], let ai be the communication arrow pin → n. Considering that a node cannot be
compromised by a worm if none of its BN-parents is compromised, then Pr(n|Pa[n]) is
defined as follows:

Pr(n|Pa[n]) =


0, ∀pin ∈ Pa[n], pin = 0,

P r

( ⋃
pin=1

ai

)
, otherwise.

(1)

Considering that a node can become compromised by any of the BN-parents that
is already compromised, then the probability Pr

(⋃
pin=1 ai

)
is derived as follows:

Pr

( ⋃
pin=1

ai

)
= 1−

∏
pin=1

[1− Pr(ai)] (2)

Fig. 2 illustrates how a CPT is generated for a sample BN. For example,
node B cannot become compromised if none of its BN-parents is compromised,
i.e., Pr(B|A,C) = 0. If only the node A is compromised, B gets compromised only

1Notice that a RPL-parent node is the opposite of a BN-parent node. For example, for an edge ni → nj ,
node nj is the RPL parent of ni, while ni is the BN-parent of nj .



when messages are received from A, i.e., Pr(B|A,C) = 0.6. If both BN-parents are
compromised, B will become compromised when messages are received by either of its
BN-parents, i.e., Pr(B|A,C) = 1− (1− 0.6)× (1− 0.9) = 0.96.

Note that since node A has no parents, its prior probability is set to a value very
close to zero (i.e., 0.0001). Alternatively, to account for other uncertainties (e.g., node
capture), the administrator could choose a prior probability value that represents his/her
subjective belief on the likelihood that node A can be directly compromised by an adver-
sary (rather than a parent node). This uncertainty could be extended to other nodes by
changing the zero probability value in Eq. 1.
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Figure 2. Bayesian network illustration.

3.3. Node Security Level Computation

When the initial configuration phase is concluded, the information collection agents are
deactivated and the Bayesian network is generated from the APG in order to estimate the
security level of sensor nodes in an online manner. Every time the current system con-
dition changes (i.e., when intrusions are observed by the IDS or compromised nodes are
recovered), the state of each vertex in the BN is set accordingly. Then, Bayesian inference
techniques of forward and backward propagation are used to update the probability that
each sensor node is directly or indirectly affected by the compromised nodes.

Formally, let N = {n1, ..., nq} be the set of vertices in the BN and E =
{n′

1, ..., n
′
r} ⊂ N be the set of compromised nodes detected by the IDS (observed at-

tack evidences). Notice that the state of each node in E is true, i.e., ∀n′
i ∈ E, n′

i = 1.
Let nj ∈ N − E be a node whose posterior probability has to be obtained (i.e., a query
node). We are interested in computing the posterior probability of nj given E, i.e., the
conditional probability Pr(nj|E), which is given as follows:

Pr(nj|E) =
Pr(nj, E)

Pr(E)
=

Pr(nj, n
′
1, ..., n

′
r)

Pr(n′
1, ..., n

′
r)

(3)

Let H = {n′′
1, ..., n

′′
k} ⊂ N be the set of nodes in the BN which are different

from query nodes and evidence nodes (i.e., hidden nodes), thus N = {nj} ∪E ∪H . The
numerator and denominator in Eq. 3 can be expressed using the joint probability of all
BN nodes as follows:



Pr(nj|E) =

∑
n′′
1 ,...,n

′′
k∈{0,1}

Pr(nj, n
′
1, ..., n

′
r, n

′′
1, ..., n

′′
k)∑

nj ,n′′
1 ,...,n

′′
k∈{0,1}

Pr(n′
1, ..., n

′
r, nj, n

′′
1, ..., n

′′
k)

(4)

In a BN, the joint probability of all vertices is given by the chain rule as:

Pr(n1, ..., nq) =

q∏
j=1

Pr(nj|Pa[nj]) (5)

By combining Eqs. 4 and 5, the posterior probability Pr(nj|E) can be solved for
any node nj . For example, in Fig. 2, suppose that nodes A and B are identified by the IDS
as malicious. The posterior probability of C being compromised is calculated as follows:

Pr(C|A,B) = Pr(C,A,B)/Pr(A,B)

= 0.46 where,
Pr(C,A,B) = 0.35 · 0.0001 · 0.96

= 0.0000336,

P r(A,B) =
∑

C∈{0,1}

Pr(A,B,C)

= (0.0001 · 0.6 · 0.65)0 + (0.0001 · 0.96 · 0.35)1
= 0.0000726

Since exact inference calculation procedures like the one presented above can be-
come computationally infeasible for large BNs, s3 makes use of an approximate Monte
Carlo inference algorithm, namely, the Gibbs sampler. In summary, the Gibbs sampler
generates a sequence of samples from a joint probability distribution of a set of ran-
dom variables X = {X1, ..., Xn}. By using a large number of samples, it is possible
to approximate the right joint distribution. Specifically, to compute a joint distribution
Pr(X = X1, ..., Xn|e1, ..., em), where ei is an evidence, the Gibbs sampler initializes X
to an arbitrary value in its state space and then samples an adjacent state, with the condi-
tional probability Pr(X|e) conducting the sampling procedure. Repeating the sampling
procedure at sufficiently long intervals makes the joint distribution converge.

4. Performance Evaluation

In this section, a simulation-based evaluation of S3 is presented, in terms of its perfor-
mance and accuracy. The experiments performed allowed to determine: (a) the minimum
number of dummy messages that ICA needs to send during the configuration phase; (b)
the energy overhead generated by ICA in the WSN; (c) the amount of time required by
S3 to both build its fundamental data structures (i.e., APG and BN) and estimate the se-
curity metric value of sensor nodes; and finally, (d) the mean error of the estimated metric
values.



4.1. Implementation and Experimental Setup

The information collection agent (ICA) is implemented in the Contiki OS
[Dunkels et al. 2004], an open source and widely used operating system for WSNs and
the Internet of things. Contiki uses extensively tested implementations of both IEEE
802.15.4 and RPL (contikiRPL). The RPL implementation is based on IPv6. Hence, uIP,
an IP stack implementation in Contiki, is used to enable IP communication in the WSN.

To implement the approximate inference in the Bayesian network, the DlibC++
[King 2002] open source library is used. This library is widely adopted in both industry
and academia.

The experiments were carried out in Cooja [Osterlind et al. 2006], the Contiki
network simulator, which has demonstrated to generate realistic results [Raza et al. 2013].
Sensor nodes in Cooja run deployable code and are emulated at the hardware level. In
the simulated WSNs, Tmote Sky [Polastre et al. 2005] nodes were used. The base station
used was a real laptop that communicated with Cooja by means of a serial socket interface.
The laptop was running Ubuntu 16.04 and had a 2.20 GHz Intel Core i5-5200U CPU and
4.0 GB of RAM. Each simulation scenario was run 10 times, and the average and the
standard deviation of the results were computed to show their precision.

4.2. Minimum Number of ICA’s Dummy Messages

Before estimating the security level of sensor nodes, S3 needs to capture the network
communication pattern in the configuration phase and translate it into an APG. To do
so, the number of messages sent by ICA should be large enough to build a model that
correctly represents the actual network behavior. At the same time, to avoid adding too
much overhead in the sensor nodes, the amount of ICA messages sent should be as small
as possible.

In this section, the number of dummy messages required for the convergence of
the APG parameters is evaluated for a typical WSN consisting of 30 nodes. In each
sensor node, the information collection agent sends a total of 3, 000 dummy messages to
the current preferred RPL-parent in order to update the counter variables. Therefore, a
total of 90, 000 one-hop dummy messages are sent in the network.

In the described scenario, the first parameter evaluated is the number of edges in
the APG. Notice that each time a RPL-parent is firstly chosen as preferred by a given
node, a new edge should be added in the APG. Fig. 3 shows the APG size vs. the number
of dummy messages transmitted. The number of edges quickly approaches 175, before
20, 000 messages are sent. Then, it starts stabilizing at approximately 30, 000 messages,
i.e., when 1, 000 messages have been transmitted per node.

The second parameter analyzed is the convergence of the probability values (la-
bels) of the APG edges. Specifically, the normalized edge probability updates (i.e., the
absolute difference between the current and the updated values) are computed. Fig. 4
shows the average behavior of those values as each node sends its 3, 000 dummy mes-
sages. As can be seen, the normalized updates quickly converge to zero at approximately
1, 000 messages. This means that on average the edge probability values begin to converge
when each node transmits 1, 000 messages.

It should be highlighted that the convergence of the APG parameters is heavily
influenced by the way RPL selects the preferred parents, which in turn depends on the



objective functions and routing metrics configured by the network administrator. How-
ever, the experiments provided in this section have shown that when the default behavior
of contikiRPL is used, 1, 000 dummy messages sent per node seems sufficient to generate
an APG with suitable coverage.

In the simulated scenario, the time interval between two consecutive dummy mes-
sages was 35 seconds. Note that this value was used in the simulations but it is not the
requirement for ICA. However, reasonably large interval values (like 35s) allow ICA to
take advantage of sensor reading messages that nodes periodically send to the base station
(usually around one per minute). Hence, ICA can reduce the number of dummy messages
sent, which decreases the energy overhead it generates. On the other hand, large intervals
have the disadvantage of increasing the duration of the training phase. Therefore, the time
interval between dummy messages (i.e., the interval ICA updates its counters) should be
chosen taking into account that a large value extends the configuration phase but saves
energy, while a small value expends more energy but shortens the configuration phase.
For example, if each node sends one dummy message per second, then the time required
for the configuration phase would be approximately 17 minutes only.
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4.3. Energy Overhead in the WSN
Considering that WSN nodes are battery powered, this section evaluates the amount of
power each information collection agent consumes to send 1, 000 dummy messages to its
RPL-parents, maintain the counter variables, as well as send the counter messages to the
base station in the end of the configuration phase.

In order to do so, the Powertrace [Dunkels et al. 2011] application provided by
Contiki is used to measure the power consumption of different operation modes of sensors
in terms of the number of clock ticks. The four typical operation modes are: low power
mode, or LPM (MCU idle, radio off); CPU mode (MCU on, radio off); listen mode
(MCU on, radio receiving); and transmit mode (MCU on, radio transmitting). The power
consumption of a node is calculated as follows:

Power(mW ) = (transmit× 19.5mA+ listen× 21.8mA+ CPU × 1.8mA
+ LPM × 0.0545mA)× 3 V / (32768× Time(s))

(6)
Where 32, 768 is the number of clock ticks per second of Tmote Sky nodes,

Time(s) is the duration of the simulation (in seconds), and the current and voltage values
(in mA and in V , respectively) have been obtained from the datasheet of Tmote Sky.



Fig. 5 shows the average power consumption per node (in mW ) for three different
sized networks, containing 10, 20, and 30 nodes, respectively. As demonstrated, the power
consumed by ICA is 0.22 mW in the 10-node WSN, while in the 30-node WSN ICA
consumes 0.48 mW . Since the power values shown in Fig. 5 are only consumed during
the configuration phase, not throughout the entire lifetime of the WSN, it can be concluded
that the energy overhead added by ICA is fairly low.

Notice that those results reflect the worst case scenario, in which all 1, 000 dummy
messages need to be sent. However, as discussed in the previous section, the time interval
ICA updates its counters can be chosen so as to reduce or even eliminate the necessity of
transmitting dummy messages.

4.4. Time required to estimate security metric values
As soon as the configuration phase is complete and the frequency DAG is generated, S3
performs three more steps (in the BS): (1) to convert the frequency DAG into an APG; (2)
to translate the APG to a Bayesian network; and (3) to run Gibbs sampler on the BN to
estimate the security level of all sensor nodes. Note that the first two steps only need to
be executed once, while the third step is executed every time new IDS alerts are raised.

In this experiment, four different sized WSNs have been evaluated. The table in
Fig. 6 shows the time required by steps (1) and (2) for each of those networks. As shown
in the table, those times are negligible (less than 50ms), for all simulated network sizes.

Because Gibbs sampler is a Monte Carlo-based statistical algorithm, it termi-
nates when the number of sampling iterations it performs produces estimated probabil-
ities that converge according to a given error threshold. Fig. 7 shows the time require-
ments for the Gibbs sampler (GS) inference procedure (step (3)) in the four evaluated
WSNs, considering two distinct number of iterations commonly used in the literature
[Raftery and Lewis 1992], namely, 2, 000 and 10, 000. As presented in the figure, in a
small WSN comprised of 20 nodes, the security metric computation for all nodes takes
0.25 and 1.2 seconds, in the two respective number of Gibbs Sampler iterations evalu-
ated. On the other hand, in a reasonably large network of 100 nodes, the inference time
increases to 2.8 and 13.1 seconds, respectively.

In summary, the experiments have shown that for typical WSNs containing from
20 to 100 nodes, the times required to perform the steps of S3 are fairly acceptable. On the
other hand, it is also important to highlight that because of the properties of Bayesian net-
works, the inference times may increase exponentially as the network size grows. How-
ever, a number of iterations as low as 2, 000 can be used to carry out BN inferences in a
timely fashion (for larger networks), at the cost of providing slightly less accurate security
metric values (as will be shown in the next section).

4.5. Accuracy of the Estimated Security Metric
Since Gibbs sampler is an approximation algorithm, this section evaluates how incorrect
can be the security metric values estimated by S3 when compared to the actual security
status of nodes. In particular, various scenarios were carried out where a worm propagates
through the network infecting several nodes. During the experiments, the number of times
each node has been compromised by the worm is counted. Then, the fraction of times
each node is compromised is compared to the probability value provided by S3 for each
node. The results of the comparisons are shown in terms of the absolute error of the
estimated value, i.e., the absolute difference between the actual infection probability and



Fig. [refFig] shows the average power consumption per node (in mW ) for three
different sized networks, containing 10, 20, and 30 nodes respectively. As demonstrated,
the power consumed by ICA ranges from 0.6 mW in the 10-node WSN to 2.3 mW
in the 30-node WSN. Considering that the configuration phase lasts about 17 minutes,
the average power consumption per node during this phase ranges from approximately
600mJ to 2, 300mJ , for the simulated WSNs.

It should be noted that this amount of energy will only be consumed during the
configuration phase, not throughout the entire lifetime of the WSN. In addition, this is the
worst case scenario, in which all 1, 000 dummy messages need to be sent. However, in
realistic environments, in which nodes periodically send messages with sensor readings
to the base station, ICA can update its counter based on those messages, instead of using
dummy messages. Therefore, no energy overhead will be added by ICA in such scenarios.

Nonetheless, to make ICA lower its energy overhead and work independently from
sensor reading messages (which may not be very frequent in some WSN applications), as
a future work, ICA will be modified to maintain its counters by counting the number of
times each parent is selected as preferred by RPL, instead of effectively sending messages
to the preferred parent. To count the number of messages lost cannot be counted, the
ETX 1, metric which is already maintained by RPL, can be used.

4.4. Time required to estimate security metric values

As soon as the configuration phase is complete and the frequency DAG is generated, S3
performs three more steps (in the base station): (1) to convert the frequency DAG into an
APG; (2) to translate the APG to a Bayesian network; and (3) to run Gibbs sampler on
the BN to estimate the security level of all sensor nodes. Note that the first two steps only
need to be executed once, while the third step is executed every time intrusion alerts are
raised by the IDS.

In this experiment, four different sized WSNs have been evaluated. Table
[refTable] shows the time required by steps (1) and (2) for each of those networks. As
shown in the table, those times are almost negligible (less than [writeTimeAndUnit]), for
simulated network sizes.

Since Gibbs sampler is a Monte Carlo-based statistical algorithm, it terminates
when the number of sampling iterations it performs produces estimated probabilities that
converge according to a given error threshold. Fig. [refFig] shows the time require-
ments for the Gibbs sampler (GS) inference procedure (step (3)) in the four evaluated
WSNs, considering two distinct number of iterations commonly used in the literature [re-
fRaftery1991], 2, 000 and 10, 000. As presented in the figure, in a small WSN comprised

1ETX (Expected Transmission Count) refers to the expected amount transmissions that are required for
a packet to be received at the destination with no error.

Number APG genera- BN genera-
of Nodes tion (ms) tion (ms)
20 0.007 2
30 0.015 4
50 0.025 8
100 0.068 45

Figure 6. Time re-
quirements of S3
steps.
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the infection probability estimated by S3. Fig. 8 presents those results for two distinct
amounts of Gibbs sampler iterations and four different sized networks.

As shown in the figure, the average error in the estimated value is slightly smaller
when the number of iterations is larger. Even in the worst case, the error value is fairly
small, i.e., approximately 0.05 (for GS 2, 000 and 100 nodes). This error is even smaller
(i.e., around 0.02) when 10, 000 Gibbs sampler iterations are performed.

In summary, the error values can be considered small for all network sizes and
number of Gibbs sampler iterations. Hence, in the case of very large networks, it may be
worth to decrease the number of Gibbs sampler iterations so as to improve performance
(computation overhead), while still obtaining accurate S3 estimates.

5. Related Work
Most of the existing works on security quantification are focused on traditional networks.
Those proposals are usually based attack graphs, which measure security based on the in-
terdependency of system vulnerabilities (e.g., the Weakest Adversary [Pamula et al. 2006]
and the Attack Resistance [Wang et al. 2007] metrics). However, none of those propos-
als is suitable to quantify security in sensor networks due to the specific characteristics,
vulnerabilities, and attack types of WSNs [Walters et al. 2007].

So far, only a few works have been proposed specifically for WSNs
[Anand et al. 2005, Ramos and Filho 2015]. Anand et al. [Anand et al. 2005] propose
a model that probabilistically quantify the resilience of WSN protocols against eaves-
dropping attacks. Their model is based on information such as sensor data distribution
and topologies. However, their model is designed to evaluate security statically, rather
than in an online manner.

An online security quantification scheme for WSNs has been recently proposed
by Ramos et al. [Ramos and Filho 2015]. This scheme is based on three security metrics
that respectively measure the resilience of the three main security mechanisms deployed
in WSNs (i.e., cryptography, key management, and IDS). Although this scheme addresses
several attack types and considers IDS alerts, it treats attacks as independent events and,
consequently, disregards worm attacks.

Finally, there exist some works [Haghighi et al. 2016, De et al. 2009] that use epi-
demic theory to model worm propagation in WSNs. Those proposals provide useful in-
formation that enable to understand worm attack behavior as well as to develop defensive



strategies. However, such works are not suitable for an online security evaluation since
they are usually based on abstract input parameters (which are very difficult to obtain)
and focus on the static analysis of the WSNs, rather than on the operational analysis.

Unlike the previous existing works, the proposed S3 model is a practical approach,
which has been implemented and evaluated in a real WSN operating system. Furthermore,
by using the Bayesian networks formalism, S3 is able to capture the dependency among
the attacks that occur in different nodes in the WSN and evaluate node security level in
an online manner. It should be noted that S3 has been mostly inspired by the security
evaluation framework proposed in [Zonouz et al. 2015] for energy delivery systems.

6. Conclusion
This paper presented the Sensor Security Status (S3), a security metric model for esti-
mating the security level of sensor nodes. Since WSNs are vulnerable to worm attacks,
which can take advantage of the network communication pattern to spread throughout
the network, S3 combines IDS alerts with the communication behavior of sensor nodes
to estimate the probability that a node has been compromised given that other malicious
nodes are present in the network. The presented simulation results show that S3 accurately
represents node security level while keeping energy and performance overhead low.

Since IDSs may have false positives, an interesting future work would be to extend
S3 to deal with IDS inaccuracies. This could be done by integrating S3 with the IDS
effectiveness metric proposed in [Ramos et al. 2017]. Furthermore, considering that the
WSN topology may change over time (e.g., new nodes can be added), it would also be
interesting to develop an approach to periodically rebuild the APG to reflect the changes
in the network communication graph while still keeping node’s energy consumption low.
Another future work is to consider other worm propagation strategies.
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